Nutthida Kitwiroon
King's College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nutthida Kitwiroon.
Atmospheric Chemistry and Physics | 2016
Efisio Solazzo; Roberto Bianconi; Christian Hogrefe; Gabriele Curci; Paolo Tuccella; Ummugulsum Alyuz; Alessandra Balzarini; Rocío Baró; Roberto Bellasio; Johannes Bieser; Jørgen Brandt; Jesper Christensen; Augistin Colette; Xavier Vazhappilly Francis; Andrea Fraser; Marta G. Vivanco; Pedro Jiménez-Guerrero; Ulas Im; Astrid Manders; Uarporn Nopmongcol; Nutthida Kitwiroon; Guido Pirovano; Luca Pozzoli; Marje Prank; Ranjeet S. Sokhi; Alper Unal; Greg Yarwood; Stefano Galmarini
Through the comparison of several regional-scale chemistry transport modeling systems that simulate meteorology and air quality over the European and North American continents, this study aims at (i) apportioning error to the responsible processes using timescale analysis, (ii) helping to detect causes of model error, and (iii) identifying the processes and temporal scales most urgently requiring dedicated investigations. The analysis is conducted within the framework of the third phase of the Air Quality Model Evaluation International Initiative (AQMEII) and tackles model performance gauging through measurement-to-model comparison, error decomposition, and time series analysis of the models biases for several fields (ozone, CO, SO2, NO, NO2, PM10, PM2.5, wind speed, and temperature). The operational metrics (magnitude of the error, sign of the bias, associativity) provide an overallsense of model strengths and deficiencies, while apportioning the error to its constituent parts (bias, variance, and covariance) can help assess the nature and quality of the error. Each of the error components is analyzed independently and apportioned to specific processes based on the corresponding timescale (long scale, synoptic, diurnal, and intraday) using the error apportionment technique devised in the former phases of AQMEII. The application of the error apportionment method to the AQMEII Phase 3 simulations provides several key insights. In addition to reaffirming the strong impact of model inputs (emission and boundary conditions) and poor representation of the stable boundary layer on model bias, results also highlighted the high interdependencies among meteorological and chemical variables, as well as among their errors. This indicates that the evaluation of air quality model performance for individual pollutants needs to be supported by complementary analysis of meteorological fields and chemical precursors to provide results that are more insightful from a model development perspective. This will require evaluaion methods that are able to frame the impact on error of processes, conditions, and fluxes at the surface. For example, error due to emission and boundary conditions is dominant for primary species (CO, particulate matter (PM)), while errors due to meteorology and chemistry are most relevant to secondary species, such as ozone. Some further aspects emerged whose interpretation requires additional consideration, such as the uniformity of the synoptic error being region- and model-independent, observed for several pollutants; the source of unexplained variance for the diurnal component; and the type of error caused by deposition and at which scale.
Atmospheric Chemistry and Physics | 2017
Ulas Im; Jørgen Brandt; Camilla Geels; Kaj M. Hansen; Jesper Christensen; Mikael Skou Andersen; Efisio Solazzo; I. Kioutsioukis; Ummugulsum Alyuz; Alessandra Balzarini; Rocío Baró; Roberto Bellasio; Roberto Bianconi; Johannes Bieser; Augustin Colette; Gabriele Curci; Aidan Farrow; Johannes Flemming; Andrea Fraser; Pedro Jiménez-Guerrero; Nutthida Kitwiroon; Ciao-Kai Liang; Guido Pirovano; Luca Pozzoli; Marje Prank; Rebecca Rose; Ranjeet S. Sokhi; Paolo Tuccella; Alper Unal; Marta G. Vivanco
The impact of air pollution on human health and the associated external costs in Europe and the United States (US) for the year 2010 are modeled by a multi-model ensemble of regional models in the frame of the third phase of the Air Quality Modelling Evaluation International Initiative (AQMEII3). The modeled surface concentrations of O3, CO, SO2 and PM2.5 are used as input to the Economic Valuation of Air Pollution (EVA) system to calculate the resulting health impacts and the associated external costs from each individual model. Along with a base case simulation, additional runs were performed introducing 20 % anthropogenic emission reductions both globally and regionally in Europe, North America and east Asia, as defined by the second phase of the Task Force on Hemispheric Transport of Air Pollution (TF-HTAP2). Health impacts estimated by using concentration inputs from different chemistry–transport models (CTMs) to the EVA system can vary up to a factor of 3 in Europe (12 models) and the United States (3 models). In Europe, the multi-model mean total number of premature deaths (acute and chronic) is calculated to be 414 000, while in the US, it is estimated to be 160 000, in agreement with previous global and regional studies. The economic valuation of these health impacts is calculated to be EUR 300 billion and 145 billion in Europe and the US, respectively. A subset of models that produce the smallest error compared to the surface observations at each time step against an all-model mean ensemble results in increase of health impacts by up to 30 % in Europe, while in the US, the optimal ensemble mean led to a decrease in the calculated health impacts by ~ 11 %. A total of 54 000 and 27 500 premature deaths can be avoided by a 20 % reduction of global anthropogenic emissions in Europe and the US, respectively. A 20 % reduction of North American anthropogenic emissions avoids a total of ~ 1000 premature deaths in Europe and 25 000 total premature deaths in the US. A 20 % decrease of anthropogenic emissions within the European source region avoids a total of 47 000 premature deaths in Europe. Reducing the east Asian anthropogenic emissions by 20 % avoids ~ 2000 total premature deaths in the US. These results show that the domestic anthropogenic emissions make the largest impacts on premature deaths on a continental scale, while foreign sources make a minor contribution to adverse impacts of air pollution.
Atmospheric Chemistry and Physics | 2018
Marta G. Vivanco; Mark R. Theobald; Héctor García-Gómez; Juan Luis Garrido; Marje Prank; Wenche Aas; Mario Adani; Ummugulsum Aluyz; Camilla Andersson; Roberto Bellasio; Bertrand Bessagnet; Fabio Bianconi; Johannes Bieser; Jørgen Brandt; Gino Briganti; Andrea Cappelletti; Gabriele Curci; Jesper Christensen; Augustin Colette; Florian Couvidat; Cornelis Cuvelier; Massimo D'Isidoro; Johannes Flemming; Andrea Fraser; Camilla Geels; Kaj M. Hansen; Christian Hogrefe; Ulas Im; Oriol Jorba; Nutthida Kitwiroon
The evaluation and intercomparison of air quality models is key to reducing model errors and uncertainty. The projects AQMEII3 and EURODELTA-Trends, in the framework of the Task Force on Hemispheric Transport of Air Pollutants and the Task Force on Measurements and Modelling, respectively (both task forces under the UNECE Convention on the Long Range Transport of Air Pollution, LTRAP), have brought together various regional air quality models to analyze their performance in terms of air concentrations and wet deposition, as well as to address other specific objectives. This paper jointly examines the results from both project communities by intercomparing and evaluating the deposition estimates of reduced and oxidized nitrogen (N) and sulfur (S) in Europe simulated by 14 air quality model systems for the year 2010. An accurate estimate of deposition is key to an accurate simulation of atmospheric concentrations. In addition, deposition fluxes are increasingly being used to estimate ecological impacts. It is therefore important to know by how much model results differ and how well they agree with observed values, at least when comparison with observations is possible, such as in the case of wet deposition. This study reveals a large variability between the wet deposition estimates of the models, with some performing acceptably (according to previously defined criteria) and others underestimating wet deposition rates. For dry deposition, there are also considerable differences between the model estimates. An ensemble of the models with the best performance for N wet deposition was made and used to explore the implications of N deposition in the conservation of protected European habitats. Exceedances of empirical critical loads were calculated for the most common habitats at a resolution of 100 × 100 m2 within the Natura 2000 network, and the habitats with the largest areas showing exceedances are determined. Moreover, simulations with reduced emissions in selected source areas indicated a fairly linear relationship between reductions in emissions and changes in the deposition rates of N and S. An approximate 20 % reduction in N and S deposition in Europe is found when emissions at a global scale are reduced by the same amount. European emissions are by far the main contributor to deposition in Europe, whereas the reduction in deposition due to a decrease in emissions in North America is very small and confined to the western part of the domain. Reductions in European emissions led to substantial decreases in the protected habitat areas with critical load exceedances (halving the exceeded area for certain habitats), whereas no change was found, on average, when reducing North American emissions in terms of average values per habitat.
Environmental Science & Technology | 2017
Andrew V. Beddows; Nutthida Kitwiroon; Martin L. Williams; Sean Beevers
Gaussian process emulation techniques have been used with the Community Multiscale Air Quality model, simulating the effects of input uncertainties on ozone and NO2 output, to allow robust global sensitivity analysis (SA). A screening process ranked the effect of perturbations in 223 inputs, isolating the 30 most influential from emissions, boundary conditions (BCs), and reaction rates. Community Multiscale Air Quality (CMAQ) simulations of a July 2006 ozone pollution episode in the UK were made with input values for these variables plus ozone dry deposition velocity chosen according to a 576 point Latin hypercube design. Emulators trained on the output of these runs were used in variance-based SA of the model output to input uncertainties. Performing these analyses for every hour of a 21 day period spanning the episode and several days on either side allowed the results to be presented as a time series of sensitivity coefficients, showing how the influence of different input uncertainties changed during the episode. This is one of the most complex models to which these methods have been applied, and here, they reveal detailed spatiotemporal patterns of model sensitivities, with NO and isoprene emissions, NO2 photolysis, ozone BCs, and deposition velocity being among the most influential input uncertainties.
The Lancet Planetary Health | 2018
Martin L. Williams; Melissa Lott; Nutthida Kitwiroon; David Dajnak; Heather Walton; M. Holland; Steve Pye; Daniela Fecht; Mireille B. Toledano; Sean Beevers
BACKGROUND Climate change poses a dangerous and immediate threat to the health of populations in the UK and worldwide. We aimed to model different scenarios to assess the health co-benefits that result from mitigation actions. METHODS In this modelling study, we combined a detailed techno-economic energy systems model (UK TIMES), air pollutant emission inventories, a sophisticated air pollution model (Community Multi-scale Air Quality), and previously published associations between concentrations and health outcomes. We used four scenarios and focused on the air pollution implications from fine particulate matter (PM2·5), nitrogen dioxide (NO2) and ozone. The four scenarios were baseline, which assumed no further climate actions beyond those already achieved and did not meet the UKs Climate Change Act (at least an 80% reduction in carbon dioxide equivalent emissions by 2050 compared with 1990) target; nuclear power, which met the Climate Change Act target with a limited increase in nuclear power; low-greenhouse gas, which met the Climate Change Act target without any policy constraint on nuclear build; and a constant scenario that held 2011 air pollutant concentrations constant until 2050. We predicted the health and economic impacts from air pollution for the scenarios until 2050, and the inequalities in exposure across different socioeconomic groups. FINDINGS NO2 concentrations declined leading to 4 892 000 life-years saved for the nuclear power scenario and 7 178 000 life-years saved for the low-greenhouse gas scenario from 2011 to 2154. However, the associations that we used might overestimate the effects of NO2 itself. PM2·5 concentrations in Great Britain are predicted to decrease between 42% and 44% by 2050 compared with 2011 in the scenarios that met the Climate Change Act targets, especially those from road traffic and off-road machinery. These reductions in PM2·5 are tempered by a 2035 peak (and subsequent decline) in biomass (wood burning), and by a large, projected increase in future demand for transport leading to potential increases in non-exhaust particulate matter emissions. The potential use of biomass in poorly controlled technologies to meet the Climate Change Act commitments would represent an important missed opportunity (resulting in 472 000 more life-years lost from PM2·5 in the low-greenhouse gas scenario and 1 122 000 more life-years lost in the nuclear power scenario from PM2·5 than the baseline scenario). Although substantial overall improvements in absolute amounts of exposure are seen compared with 2011, these outcomes mask the fact that health inequalities seen (in which socioeconomically disadvantaged populations are among the most exposed) are projected to be maintained up to 2050. INTERPRETATION The modelling infrastructure created will help future researchers explore a wider range of climate policy scenarios, including local, European, and global scenarios. The need to strengthen the links between climate change policy objectives and public health imperatives, and the benefits to societal wellbeing that might result is urgent. FUNDING National Institute for Health Research.
Journal of Exposure Science and Environmental Epidemiology | 2013
Sean Beevers; Nutthida Kitwiroon; Martin L. Williams; Frank J. Kelly; H. Ross Anderson; David C. Carslaw
Atmospheric Chemistry and Physics | 2013
Lisa Emberson; Nutthida Kitwiroon; Sean Beevers; Patrick Büker; Steve Cinderby
Atmospheric Environment | 2012
Sean Beevers; Nutthida Kitwiroon; Martin L. Williams; David C. Carslaw
Environmental Science & Technology | 2016
James Smith; Christina Mitsakou; Nutthida Kitwiroon; Ben Barratt; Heather Walton; Jonathon G. Taylor; H R Anderson; Frank J. Kelly; Sean Beevers
Atmospheric Chemistry and Physics | 2012
Lisa Emberson; Nutthida Kitwiroon; Sean Beevers; Patrick Büker; Steve Cinderby