O. S. Kostareva
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by O. S. Kostareva.
Acta Crystallographica Section D-biological Crystallography | 2012
Svetlana Tishchenko; A. G. Gabdulkhakov; Natalia Nevskaya; A. V. Sarskikh; O. S. Kostareva; Ekaterina Nikonova; A. Sycheva; Sergei A. Moshkovskii; Maria Garber; Stanislav Nikonov
The crystal structure of the isolated full-length ribosomal L1 stalk, consisting of Thermus thermophilus ribosomal protein L1 in complex with a specific 80-nucleotide fragment of 23S rRNA, has been solved for the first time at high resolution. The structure revealed details of protein-RNA interactions in the L1 stalk. Analysis of the crystal packing enabled the identification of sticky sites on the protein and the 23S rRNA which may be important for ribosome assembly and function. The structure was used to model different conformational states of the ribosome. This approach provides an insight into the roles of domain II of L1 and helix 78 of rRNA in ribosome function.
Journal of Molecular Biology | 2008
Svetlana Tishchenko; Vladislav Kljashtorny; O. S. Kostareva; Natalia Nevskaya; Alexei Nikulin; Pavel Gulak; Wolfgang Piendl; Maria Garber; Stanislav Nikonov
The two-domain ribosomal protein L1 has a dual function as a primary rRNA-binding ribosomal protein and as a translational repressor that binds its own mRNA. Here, we report the crystal structure of a complex between the isolated domain I of L1 from the bacterium Thermus thermophilus and a specific mRNA fragment from Methanoccocus vannielii. In parallel, we report kinetic characteristics measured for complexes formed by intact TthL1 and its domain I with the specific mRNA fragment. Although, there is a close similarity between the RNA-protein contact regions in both complexes, the association rate constant is higher in the case of the complex formed by the isolated domain I. This finding demonstrates that domain II hinders mRNA recognition by the intact TthL1.
Journal of Molecular Recognition | 2011
O. S. Kostareva; Svetlana Tishchenko; Ekaterina Nikonova; Vladislav Kljashtorny; Natalia Nevskaya; Alexei Nikulin; Anna Sycheva; Sergei A. Moshkovskii; Wolfgang Piendl; Maria Garber; Stanislav Nikonov
The formation of a specific and stable complex between two (macro)molecules implies complementary contact surface regions. We used ribosomal protein L1, which specifically binds a target site on 23S rRNA, to study the influence of surface modifications on the protein−RNA affinity. The threonine residue in the universally conserved triad Thr−Met−Gly significant for RNA recognition and binding was substituted by phenylalanine, valine and alanine, respectively. The crystal structure of the mutant Thr217Val of the isolated domain I of L1 from Thermus thermophilus (TthL1) was determined. This structure and that of two other mutants, which had been determined earlier, were analysed and compared with the structure of the wild type L1 proteins. The influence of structural changes in the mutant L1 proteins on their affinity for the specific 23S rRNA fragment was tested by kinetic experiments using surface plasmon resonance (SPR) biosensor analysis. Association rate constants undergo minor changes, whereas dissociation rate constants displayed significantly higher values in comparison with that for the wild type protein. The analysed L1 mutants recognize the specific RNA target site, but the mutant L1−23S rRNA complexes are less stable compared to the wild type complexes. Copyright
Acta Crystallographica Section D-biological Crystallography | 2011
Svetlana Tishchenko; Ekaterina Nikonova; O. S. Kostareva; A. G. Gabdulkhakov; Wolfgang Piendl; Natalia Nevskaya; Maria Garber; Stanislav Nikonov
Ribosomal protein L1 consists of two domains connected by two oppositely directed fragments of the polypeptide chain in a hinge-resembling fashion. The domain arrangement determines the overall shape of the protein, corresponding to an open or a closed conformation. Ribosomal L1 proteins from archaea demonstrate the open conformation in both isolated and RNA-bound forms. RNA-free ribosomal L1 proteins from bacteria display the closed conformation, whereas in complex with RNA these proteins exist in an open conformation similar to their archaeal counterparts. Analysis of all available L1 amino-acid sequences shows that in comparison to the archaeal proteins, the bacterial proteins possess an extra residue in one of the two interdomain fragments which could be responsible for their closed conformation. To verify this suggestion, a Thermus thermophilus L1 mutant lacking one residue in the fragment corresponding to the hinge was obtained and its crystal structure was solved. It was found that this mutation transformed the closed conformation of the bacterial L1 protein into an open conformation similar to that of the archaeal L1 proteins.
Molecular Biology | 2007
E. Yu. Nikonova; Sergey Volchkov; Vladislav Kljashtorny; Svetlana Tishchenko; O. S. Kostareva; Natalia Nevskaya; Oleg Nikonov; Azat G. Gabdoulkhakov; Alexey D. Nikulin; N. L. Davydova; V. A. Streltsov; Maria Garber; Stanislav Nikonov
Nine mutant ribosomal proteins L1 from the bacterium Thermus thermophilus and archaeon Methanococcus jannaschii were obtained and their crystal structures were determined and analyzed. The structure of the S179C TthL1 mutant, determined earlier, was also analyzed. In half of the proteins studied, point mutations of the amino acid residues exposed on the protein surface essentially changed the spatial structure of the protein. This proves that a correct study of biological processes with the help of site-directed mutagenesis requires a preliminary determination or, at least, modeling of the structures of mutant proteins. A detailed comparison of the structures of the L1 mutants and the corresponding wild-type L1 proteins demonstrated that the side chain of a mutated amino acid residue tends to adopt a location similar to that of the side chain of the corresponding residue in the wild-type protein. This observation assists in modeling the structure of mutant proteins.
Acta Crystallographica Section D-biological Crystallography | 2015
Svetlana Tishchenko; O. S. Kostareva; A. G. Gabdulkhakov; Alisa Mikhaylina; Ekaterina Nikonova; Natalia Nevskaya; Alena Sarskikh; Wolfgang Piendl; Maria Garber; Stanislav Nikonov
Ribosomal protein L1, as part of the L1 stalk of the 50S ribosomal subunit, is implicated in directing tRNA movement through the ribosome during translocation. High-resolution crystal structures of four mutants (T217V, T217A, M218L and G219V) of the ribosomal protein L1 from Thermus thermophilus (TthL1) in complex with a specific 80 nt fragment of 23S rRNA and the structures of two of these mutants (T217V and G219V) in the RNA-unbound form are reported in this work. All mutations are located in the highly conserved triad Thr-Met-Gly, which is responsible for about 17% of all protein-RNA hydrogen bonds and 50% of solvent-inaccessible intermolecular hydrogen bonds. In the mutated proteins without bound RNA the RNA-binding regions show substantial conformational changes. On the other hand, in the complexes with RNA the structures of the RNA-binding surfaces in all studied mutants are very similar to the structure of the wild-type protein in complex with RNA. This shows that formation of the RNA complexes restores the distorted surfaces of the mutant proteins to a conformation characteristic of the wild-type protein complex. Domain I of the mutated TthL1 and helix 77 of 23S rRNA form a rigid body identical to that found in the complex of wild-type TthL1 with RNA, suggesting that the observed relative orientation is conserved and is probably important for ribosome function. Analysis of the complex structures and the kinetic data show that the number of intermolecular contacts and hydrogen bonds in the RNA-protein contact area does not correlate with the affinity of the protein for RNA and cannot be used as a measure of affinity.
Protein Journal | 2015
A. P. Korepanov; O. S. Kostareva; Maria V. Bazhenova; Mikhail Bubunenko; Maria Garber; Svetlana Tishchenko
L1 is a conserved protein of the large ribosomal subunit. This protein binds strongly to the specific region of the high molecular weight rRNA of the large ribosomal subunit, thus forming a conserved flexible structural element—the L1 stalk. L1 protein also regulates translation of the operon that comprises its own gene. Crystallographic data suggest that L1 interacts with RNA mainly by means of its domain I. We show here for the first time that the isolated domain I of the bacterial protein L1 of Thermus thermophilus and Escherichia coli is able to incorporate in vivo into the E. coli ribosome. Furthermore, domain I of T. thermophilus L1 can regulate expression of the L1 gene operon of Archaea in the coupled transcription–translation system in vitro, as well as the intact protein. We have identified the structural elements of domain I of the L1 protein that may be responsible for its regulatory properties.
Crystallography Reports | 2014
A. V. Sarskikh; A. G. Gabdulkhakov; O. S. Kostareva; A. A. Shklyaeva; Svetlana Tishchenko
The crystal structure of a mutant of archaeal ribosomal protein L1 from Methanococcus jannaschii with the deletion of a nonconserved positively charged cluster consisting of eight C-terminal amino acid residues is determined by the molecular replacement method at 1.75 Å resolution. This mutant is shown to form more stable and ordered crystals belonging to a space group other than that of the wild-type protein crystals. The positively charged C-terminal region has only a slight effect on the interaction between protein L1 and RNA molecules. Hence, this mutant can be used to prepare protein-RNA complexes and obtain their crystals.
Biochemistry | 2014
Alisa Mikhaylina; O. S. Kostareva; A. V. Sarskikh; Roman Fedorov; Wolfgang Piendl; Maria Garber; Svetlana Tishchenko
Ribosomal protein L4 is a regulator of protein synthesis in the Escherichia coli S10 operon, which contains genes of 11 ribosomal proteins. In this work, we have investigated regulatory functions of ribosomal protein L4 of the thermophilic archaea Methanococcus jannaschii. The S10-like operon from M. jannaschii encodes not 11, but only five ribosomal proteins (L3, L4, L23, L2, S19), and the first protein is L3 instead of S10. We have shown that MjaL4 and its mutant form lacking an elongated loop specifically inhibit expression of the first gene of the S10-like operon from the same organism in a coupled transcription?translation system in vitro. By deletion analysis, an L4-binding regulatory site has been found on MjaL3 mRNA, and a fragment of mRNA with length of 40 nucleotides has been prepared that is necessary and sufficient for the specific interaction with the MjaL4 protein.
Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2013
Svetlana Tishchenko; A. G. Gabdulkhakov; Uliana Tin; O. S. Kostareva; Chen Lin; Vladimir L. Katanaev
Regulator of G-protein signalling (RGS) proteins negatively regulate heterotrimeric G-protein signalling through their conserved RGS domains. RGS domains act as GTPase-activating proteins, accelerating the GTP hydrolysis rate of the activated form of Gα-subunits. Although omnipresent in eukaryotes, RGS proteins have not been adequately analysed in non-mammalian organisms. The Drosophila melanogaster Gαo-subunit and the RGS domain of its interacting partner CG5036 have been overproduced and purified; the crystallization of the complex of the two proteins using PEG 4000 as a crystallizing agent and preliminary X-ray crystallographic analysis are reported. Diffraction data were collected to 2.0 Å resolution using a synchrotron-radiation source.