Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Oded Foreman is active.

Publication


Featured researches published by Oded Foreman.


Cell | 2011

Mosaic Analysis with Double Markers Reveals Tumor Cell of Origin in Glioma

Chong Liu; Jonathan C. Sage; Michael R. Miller; Roel G.W. Verhaak; Simon Hippenmeyer; Hannes Vogel; Oded Foreman; Roderick T. Bronson; Akiko Nishiyama; Liqun Luo; Hui Zong

Cancer cell of origin is difficult to identify by analyzing cells within terminal stage tumors, whose identity could be concealed by the acquired plasticity. Thus, an ideal approach to identify the cell of origin is to analyze proliferative abnormalities in distinct lineages prior to malignancy. Here, we use mosaic analysis with double markers (MADM) in mice to model gliomagenesis by initiating concurrent p53/Nf1 mutations sporadically in neural stem cells (NSCs). Surprisingly, MADM-based lineage tracing revealed significant aberrant growth prior to malignancy only in oligodendrocyte precursor cells (OPCs), but not in any other NSC-derived lineages or NSCs themselves. Upon tumor formation, phenotypic and transcriptome analyses of tumor cells revealed salient OPC features. Finally, introducing the same p53/Nf1 mutations directly into OPCs consistently led to gliomagenesis. Our findings suggest OPCs as the cell of origin in this model, even when initial mutations occur in NSCs, and highlight the importance of analyzing premalignant stages to identify the cancer cell of origin.


Proceedings of the National Academy of Sciences of the United States of America | 2009

A critical role for IL-21 receptor signaling in the pathogenesis of systemic lupus erythematosus in BXSB-Yaa mice

Jason A. Bubier; Thomas J. Sproule; Oded Foreman; Rosanne Spolski; Daniel J. Shaffer; Herbert C. Morse; Warren J. Leonard; Derry C. Roopenian

Interleukin 21 (IL-21) is a pleiotropic cytokine produced by CD4 T cells that affects the differentiation and function of T, B, and NK cells by binding to a receptor consisting of the common cytokine receptor γ chain and the IL-21 receptor (IL-21R). IL-21, a product associated with IL-17-producing CD4 T cells (TH17) and follicular CD4 T helper cells (TFH), has been implicated in autoimmune disorders including the severe systemic lupus erythematosus (SLE)-like disease characteristic of BXSB-Yaa mice. To determine whether IL-21 plays a significant role in this disease, we compared IL-21R-deficient and -competent BXSB-Yaa mice for multiple parameters of SLE. The deficient mice showed none of the abnormalities characteristic of SLE in IL-21R-competent Yaa mice, including hypergammaglobulinemia, autoantibody production, reduced frequencies of marginal zone B cells and monocytosis, renal disease, and premature morbidity. IL-21 production associated with this autoimmune disease was not a product of TH17 cells and was not limited to conventional CXCR5+ TFH but instead was produced broadly by ICOS+ CD4+ splenic T cells. IL-21 arising from an abnormal population of CD4 T cells is thus central to the development of this lethal disease, and, more generally, could play an important role in human SLE and related autoimmune disorders.


Clinical and Experimental Immunology | 2009

Human peripheral blood leucocyte non‐obese diabetic‐severe combined immunodeficiency interleukin‐2 receptor gamma chain gene mouse model of xenogeneic graft‐versus‐host‐like disease and the role of host major histocompatibility complex

Michael A. King; Laurence D. Covassin; Michael A. Brehm; Waldemar J. Racki; Todd Pearson; Jean Leif; Joseph Laning; W. Fodor; Oded Foreman; Lisa M. Burzenski; Thomas H. Chase; Bruce Gott; Aldo A. Rossini; Rita Bortell; Leonard D. Shultz; Dale L. Greiner

Immunodeficient non‐obese diabetic (NOD)‐severe combined immune‐deficient (scid) mice bearing a targeted mutation in the gene encoding the interleukin (IL)‐2 receptor gamma chain gene (IL2rγnull) engraft readily with human peripheral blood mononuclear cells (PBMC). Here, we report a robust model of xenogeneic graft‐versus‐host‐like disease (GVHD) based on intravenous injection of human PBMC into 2 Gy conditioned NOD‐scid IL2rγnull mice. These mice develop xenogeneic GVHD consistently (100%) following injection of as few as 5 × 106 PBMC, regardless of the PBMC donor used. As in human disease, the development of xenogeneic GVHD is highly dependent on expression of host major histocompatibility complex class I and class II molecules and is associated with severely depressed haematopoiesis. Interrupting the tumour necrosis factor‐α signalling cascade with etanercept, a therapeutic drug in clinical trials for the treatment of human GVHD, delays the onset and progression of disease. This model now provides the opportunity to investigate in vivo mechanisms of xenogeneic GVHD as well as to assess the efficacy of therapeutic agents rapidly.


Clinical and Experimental Immunology | 2008

Non-obese diabetic-recombination activating gene-1 (NOD-Rag1 null) interleukin (IL)-2 receptor common gamma chain (IL2r gamma null) null mice: a radioresistant model for human lymphohaematopoietic engraftment

Todd Pearson; Leonard D. Shultz; David Miller; Marie A. King; Joseph Laning; William Fodor; Amy Cuthbert; Lisa M. Burzenski; Bruce Gott; Bonnie L. Lyons; Oded Foreman; Aldo A. Rossini; Dale L. Greiner

Immunodeficient hosts engrafted with human lymphohaematopoietic cells hold great promise as a preclinical bridge for understanding human haematopoiesis and immunity. We now describe a new immunodeficient radioresistant non‐obese diabetic mice (NOD) stock based on targeted mutations in the recombination activating gene‐1 (Rag1null) and interleukin (IL)‐2 receptor common gamma chain (IL2rγnull), and compare its ability to support lymphohaematopoietic cell engraftment with that achieved in radiosensitive NOD.CB17–Prkdcscid (NOD–Prkdcscid) IL2rγnull mice. We observed that immunodeficient NOD–Rag1null IL2rγnull mice tolerated much higher levels of irradiation conditioning than did NOD–Prkdcscid IL2rγnull mice. High levels of human cord blood stem cell engraftment were observed in both stocks of irradiation‐conditioned adult mice, leading to multi‐lineage haematopoietic cell populations and a complete repertoire of human immune cells, including human T cells. Human peripheral blood mononuclear cells also engrafted at high levels in unconditioned adult mice of each stock. These data document that Rag1null and scid stocks of immunodeficient NOD mice harbouring the IL2rγnull mutation support similar levels of human lymphohaematopoietic cell engraftment. NOD–Rag1null IL2rγnull mice will be an important new model for human lymphohaematopoietic cell engraftment studies that require radioresistant hosts.


Proceedings of the National Academy of Sciences of the United States of America | 2011

TNF-alpha from inflammatory dendritic cells (DCs) regulates lung IL-17A/IL-5 levels and neutrophilia versus eosinophilia during persistent fungal infection.

Mingjian Fei; Shikha Bhatia; Timothy B. Oriss; Manohar Yarlagadda; Anupriya Khare; Shizuo Akira; Shinobu Saijo; Yoichiro Iwakura; Beth A. Fallert Junecko; Todd A. Reinhart; Oded Foreman; Prabir Ray; Jay K. Kolls; Anuradha Ray

Aspergillus fumigatus is commonly associated with allergic bronchopulmonary aspergillosis in patients with severe asthma in which chronic airway neutrophilia predicts a poor outcome. We were able to recapitulate fungus-induced neutrophilic airway inflammation in a mouse model in our efforts to understand the underlying mechanisms. However, neutrophilia occurred in a mouse strain-selective fashion, providing us with an opportunity to perform a comparative study to elucidate the mechanisms involved. Here we show that TNF-α, largely produced by Ly6c+CD11b+ dendritic cells (DCs), plays a central role in promoting IL-17A from CD4+ T cells and collaborating with it to induce airway neutrophilia. Compared with C57BL/6 mice, BALB/c mice displayed significantly more TNF-α–producing DCs and macrophages in the lung. Lung TNF-α levels were drastically reduced in CD11c-DTR BALB/c mice depleted of CD11c+ cells, and TNF-α–producing Ly6c+CD11b+ cells were abolished in Dectin-1−/− and MyD88−/− BALB/c mice. TNF-α deficiency itself blunted accumulation of inflammatory Ly6c+CD11b+ DCs. Also, lack of TNF-α decreased IL-17A but promoted IL-5 levels, switching inflammation from a neutrophil to eosinophil bias resembling that in C57BL/6 mice. The TNF-αlow DCs in C57BL/6 mice contained more NF-κB p50 homodimers, which are strong repressors of TNF-α transcription. Functionally, collaboration between TNF-α and IL-17A triggered significantly higher levels of the neutrophil chemoattractants keratinocyte cytokine and macrophage inflammatory protein 2 in BALB/c mice. Our study identifies TNF-α as a molecular switch that orchestrates a sequence of events in DCs and CD4 T cells that promote neutrophilic airway inflammation.


Neuron | 2015

Lack of Widespread BBB Disruption in Alzheimer's Disease Models: Focus on Therapeutic Antibodies

Nga Bien-Ly; C. Andrew Boswell; Surinder Jeet; Thomas G. Beach; Kwame Hoyte; Wilman Luk; Vera Shihadeh; Sheila Ulufatu; Oded Foreman; Yanmei Lu; Jason DeVoss; Marcel van der Brug; Ryan J. Watts

The blood-brain barrier (BBB) limits brain uptake of therapeutic antibodies. It is believed that the BBB is disrupted in Alzheimers disease (AD), potentially increasing drug permeability de facto. Here we compared active versus passive brain uptake of systemically dosed antibodies (anti-transferrin receptor [TfR] bispecific versus control antibody) in mouse models of AD. We first confirmed BBB disruption in a mouse model of multiple sclerosis as a positive control. Importantly, we found that BBB permeability was vastly spared in mouse models of AD, including PS2-APP, Tau transgenics, and APOE4 knockin mice. Brain levels of TfR in mouse models or in human cases of AD resembled controls, suggesting target engagement of TfR bispecific is not limited. Furthermore, infarcts from human AD brain showed similar occurrences compared to age-matched controls. These results question the widely held view that the BBB is largely disrupted in AD, raising concern about assumptions of drug permeability in disease.


The Journal of Pathology | 2012

Anti-VEGF antibody therapy does not promote metastasis in genetically engineered mouse tumour models†

Mallika Singh; Suzana S. Couto; William F. Forrest; Anthony Lima; Jason H. Cheng; Rafael Molina; Jason E. Long; Patricia Hamilton; Angela McNutt; Ian Kasman; Michelle Nannini; Hani Bou Reslan; Tim C. Cao; Calvin C K Ho; Kai H. Barck; Richard A. D. Carano; Oded Foreman; Jeffrey Eastham-Anderson; Adrian M. Jubb; Napoleone Ferrara; Leisa Johnson

Resistance to anti‐angiogenic therapy can occur via several potential mechanisms. Unexpectedly, recent studies showed that short‐term inhibition of either VEGF or VEGFR enhanced tumour invasiveness and metastatic spread in preclinical models. In an effort to evaluate the translational relevance of these findings, we examined the consequences of long‐term anti‐VEGF monoclonal antibody therapy in several well‐validated genetically engineered mouse tumour models of either neuroendocrine or epithelial origin. Anti‐VEGF therapy decreased tumour burden and increased overall survival, either as a single agent or in combination with chemotherapy, in all four models examined. Importantly, neither short‐ nor long‐term exposure to anti‐VEGF therapy altered the incidence of metastasis in any of these autochthonous models, consistent with retrospective analyses of clinical trials. In contrast, we observed that sunitinib treatment recapitulated previously reported effects on tumour invasiveness and metastasis in a pancreatic neuroendocrine tumour (PNET) model. Consistent with these results, sunitinib treatment resulted in an up‐regulation of the hypoxia marker GLUT1 in PNETs, whereas anti‐VEGF did not. These results indicate that anti‐VEGF mediates anti‐tumour effects and therapeutic benefits without a paradoxical increase in metastasis. Moreover, these data underscore the concept that drugs targeting VEGF ligands and receptors may affect tumour metastasis in a context‐dependent manner and are mechanistically distinct from one another. Copyright


Nature Medicine | 2014

A rare mutation in UNC5C predisposes to late-onset Alzheimer's disease and increases neuronal cell death

Monica K. Wetzel-Smith; Julie Hunkapiller; Tushar Bhangale; Karpagam Srinivasan; Janice Maloney; Jasvinder Atwal; Susan M. Sa; Murat Yaylaoglu; Oded Foreman; Ward Ortmann; Nisha Rathore; David V. Hansen; Marc Tessier-Lavigne; Richard Mayeux; Margaret A. Pericak-Vance; Jonathan L. Haines; Lindsay A. Farrer; Gerard D. Schellenberg; Alison Goate; Timothy W. Behrens; Carlos Cruchaga; Ryan J. Watts; Robert R. Graham

We have identified a rare coding mutation, T835M (rs137875858), in the UNC5C netrin receptor gene that segregated with disease in an autosomal dominant pattern in two families enriched for late-onset Alzheimers disease and that was associated with disease across four large case-control cohorts (odds ratio = 2.15, Pmeta = 0.0095). T835M alters a conserved residue in the hinge region of UNC5C, and in vitro studies demonstrate that this mutation leads to increased cell death in human HEK293T cells and in rodent neurons. Furthermore, neurons expressing T835M UNC5C are more susceptible to cell death from multiple neurotoxic stimuli, including β-amyloid (Aβ), glutamate and staurosporine. On the basis of these data and the enriched hippocampal expression of UNC5C in the adult nervous system, we propose that one possible mechanism in which T835M UNC5C contributes to the risk of Alzheimers disease is by increasing susceptibility to neuronal cell death, particularly in vulnerable regions of the Alzheimers disease brain.


PLOS ONE | 2010

Tyr682 in the Intracellular Domain of APP Regulates Amyloidogenic APP Processing In Vivo

Alessia P. M. Barbagallo; Richard Weldon; Robert Tamayev; Dawang Zhou; Luca Giliberto; Oded Foreman; Luciano D'Adamio

Background The pathogenesis of Alzheimers disease is attributed to misfolding of Amyloid-β (Aβ) peptides. Aβ is generated during amyloidogenic processing of Aβ-precursor protein (APP). Another characteristic of the AD brain is increased phosphorylation of APP amino acid Tyr682. Tyr682 is part of the Y682ENPTY687 motif, a docking site for interaction with cytosolic proteins that regulate APP metabolism and signaling. For example, normal Aβ generation and secretion are dependent upon Tyr682 in vitro. However, physiological functions of Tyr682 are unknown. Methodology/Principal Findings To this end, we have generated an APP Y682G knock-in (KI) mouse to help dissect the role of APP Tyr682 in vivo. We have analyzed proteolytic products from both the amyloidogenic and non-amyloidogenic processing of APP and measure a profound shift towards non-amyloidogenic processing in APP KI mice. In addition, we demonstrate the essential nature of amino acid Tyr682 for the APP/Fe65 interaction in vivo. Conclusions/Significance Together, these observations point to an essential role of APP intracellular domain for normal APP processing and function in vivo, and provide rationale for further studies into physiological functions associated with this important phosphorylation site.


Blood | 2012

Inhibition of PPARγ in myeloid-lineage cells induces systemic inflammation, immunosuppression, and tumorigenesis.

Lingyan Wu; Cong Yan; Magdalena Czader; Oded Foreman; Janice S. Blum; Reuben Kapur; Hong Du

Peroxisome proliferator-activated receptor-γ (PPARγ) is an anti-inflammatory molecule. To study its biologic function in myeloid cells, dominant-negative PPARγ (dnPPARγ) was overexpressed in a myeloid-specific bitransgenic mouse model. In this bitransgenic system, overexpression of the dnPPARγ-Flag fusion protein in myeloid-lineage cells abnormally elevated frequencies and total numbers of IL-7Rα(-)Lin(-)c-Kit(+)Sca-1(-), Lin(-)/Scal(+)/c-Kit(+), common myeloid, and granulocyte-monocyte progenitor populations in the BM. dnPPARγ overexpression led to up-regulation of IL-1β, IL-6, and TNFα in the blood plasma. As a result, CD11b(+)Ly6G(+) cells were systemically increased in association with activation of Stat3, NF-κB, Erk1/2, and p38 molecules. Myeloid-derived suppressor cells (MDSCs) inhibited the proliferation and lymphokine production of wild-type CD4+ T cells in vitro. CD4+ T cells from doxycycline-treated bitransgenic mice displayed reduced proliferation and lymphokine release. Both CD4+ and CD8+ T-cell populations were decreased in doxycycline-treated bitransgenic mice. Multiple forms of carcinoma and sarcoma in the lung, liver, spleen, and lymph nodes were observed in doxycycline-treated bitransgenic mice. BM transplantation revealed that a myeloid-autonomous defect was responsible for MDSC expansion, immunosuppression, and tumorigenesis in these mice. These studies suggest that anti-inflammatory PPARγ in myeloid-lineage cells plays a key role in controlling pro-inflammatory cytokine synthesis, MDSC expansion, immunosuppression, and the development of cancer.

Collaboration


Dive into the Oded Foreman's collaboration.

Top Co-Authors

Avatar

Leonard D. Shultz

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Lisa M. Burzenski

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruce Gott

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Dale L. Greiner

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Herbert C. Morse

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge