Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Odília Queirós is active.

Publication


Featured researches published by Odília Queirós.


Fems Microbiology Reviews | 2008

Transport of carboxylic acids in yeasts

Margarida Casal; Sandra Paiva; Odília Queirós; Isabel Soares-Silva

Carboxylic acid transporters form a heterogeneous group of proteins, presenting diverse mechanisms of action and regulation, and belonging to several different families. Multiple physiological and genetic studies in several organisms, from yeast to mammals, have allowed the identification of various genes coding for carboxylate transporters. Detailed understanding of the metabolism and transport of these nutrients has become more important than ever, both from a fundamental and from an applied point of view. Under a biotechnological perspective, the increasing economic value of these compounds has boosted this field of research considerably. Here we review the current knowledge on yeast carboxylate transporters, at the biochemical and molecular level, focusing also on recent biotechnological developments.


Bioanalysis | 2013

Hair as an alternative matrix in bioanalysis

Joana Barbosa; Juliana Faria; Félix Carvalho; Madalena Pedro; Odília Queirós; Roxana Moreira; Ricardo Jorge Dinis-Oliveira

Alternative matrices are steadily gaining recognition as biological samples for toxicological analyses. Hair presents many advantages over traditional matrices, such as urine and blood, since it provides retrospective information regarding drug exposure, can distinguish between chronic and acute or recent drug use by segmental analysis, is easy to obtain, and has considerable stability for long periods of time. For this reason, it has been employed in a wide variety of contexts, namely to evaluate workplace drug exposure, drug-facilitated sexual assault, pre-natal drug exposure, anti-doping control, pharmacological monitoring and alcohol abuse. In this article, issues concerning hair structure, collection, storage and analysis are reviewed. The mechanisms of drug incorporation into hair are briefly discussed. Analytical techniques for simultaneous drug quantification in hair are addressed. Finally, representative examples of drug quantification using hair are summarized, emphasizing its potentialities and limitations as an alternative biological matrix for toxicological analyses.


Journal of Bioenergetics and Biomembranes | 2012

Butyrate activates the monocarboxylate transporter MCT4 expression in breast cancer cells and enhances the antitumor activity of 3-bromopyruvate

Odília Queirós; Ana Preto; António Pacheco; Céline Pinheiro; João Azevedo-Silva; Roxana Moreira; Madalena Pedro; Young Hee Ko; Peter L. Pedersen; Fátima Baltazar; Margarida Casal

Most malignant tumors exhibit the Warburg effect, which consists in increased glycolysis rates with production of lactate, even in the presence of oxygen. Monocarboxylate transporters (MCTs), maintain these glycolytic rates, by mediating the influx and/or efflux of lactate and are overexpressed in several cancer cell types. The lactate and pyruvate analogue 3-bromopyruvate (3-BP) is an inhibitor of the energy metabolism, which has been proposed as a specific antitumor agent. In the present study, we aimed at determining the effect of 3-BP in breast cancer cells and evaluated the putative role of MCTs on this effect. Our results showed that the three breast cancer cell lines used presented different sensitivities to 3-BP: ZR-75-1 ER (+)>MCF-7 ER (+)>SK-BR-3 ER (−). We also demonstrated that 3-BP reduced lactate production, induced cell morphological alterations and increased apoptosis. The effect of 3-BP appears to be cytotoxic rather than cytostatic, as a continued decrease in cell viability was observed after removal of 3-BP. We showed that pre-incubation with butyrate enhanced significantly 3-BP cytotoxicity, especially in the most resistant breast cancer cell line, SK-BR-3. We observed that butyrate treatment induced localization of MCT1 in the plasma membrane as well as overexpression of MCT4 and its chaperone CD147. Our results thus indicate that butyrate pre-treatment potentiates the effect of 3-BP, most probably by increasing the rates of 3-BP transport through MCT1/4. This study supports the potential use of butyrate as adjuvant of 3-BP in the treatment of breast cancer resistant cells, namely ER (−).


Yeast | 1998

Isolation and characterization of Kluyveromyces marxianus mutants deficient in malate transport

Odília Queirós; Margarida Casal; S. Althoff; Pedro Moradas-Ferreira; Cecília Leão

In malic acid‐grown cells of the strains ATCC 10022 and KMS3 of Kluyveromyces marxianus the transport of malic acid occurred by a malate‐proton symport, which accepted l‐malic, d‐malic, succinic and fumaric acids, but not tartaric, malonic or maleic acids. The system was inducible and subjected to glucose repression. Mutants of the strain KMS3, unable to grow in a medium with malic acid, were isolated and checked for their capacity to utilize several carbon sources and to transport dicarboxylic acids by the malate‐proton symport. Two distinct clones affected on malate transport were obtained. Both were able to grow on a medium with glycerol or ethanol but not with dl‐malic, succinic, oxoglutaric and oxaloacetic acids as the sole carbon and energy sources. However, while one of the mutants (Mal7) displayed activity levels for the enzymes malate dehydrogenase, isocitrate lyase, and phosphoenolpyruvate carboxykinase similar to those of the wild strain, in the other mutant type (Mal6) the activities for the same enzymes were significantly reduced. Plasma membranes from derepressed cells of the wild strain and of the mutants Mal6 and Mal7 were isolated and the protein analysed by SDS–PAGE. The electrophoretic patterns of these preparations differed in a polypeptide with an apparent molecular mass of about 28 kDa, which was absent only in the mutant Mal7. The results indicated that Mal7 can be affected in a gene that encodes a malate carrier in K. marxianus.


Journal of Bioenergetics and Biomembranes | 2013

Cancer cell bioenergetics and pH regulation influence breast cancer cell resistance to paclitaxel and doxorubicin

Diana Tavares-Valente; Fátima Baltazar; Roxana Moreira; Odília Queirós

The multidrug resistance (MDR) phenotype, frequently observed during cancer treatment, is often associated with drug efflux pump activity. However, many other factors are also known to be involved. Cancer cells often rely on aerobic glycolysis for energy production; this is known as the “Warburg effect” and is used as a survival mechanism. Associated to this event, a reverse pH gradient across the cell membrane occurs, leading to cytosol alkalinization and extracellular acidification. In the present study, we investigated the role of different mechanisms involved in MDR, such as altered tumor microenvironment and energetic metabolism. The breast cancer cell line MCF-7, used as model, was exposed to two widely used antitumor drugs, paclitaxel (antimitotic agent) and doxorubicin (alkylating agent). Cancer pH regulation was shown to be crucial for malignant characteristics such as cell migration and drug resistance. Our results showed that a lower extracellular pH induced a higher migratory capacity and higher resistance to the studied chemotherapeutical compounds in MCF-7 cells. Besides the influence of the extracellular pH, the role of the tumor metabolism in the MDR phenotype was also investigated. Pre-treatment with different bioenergetic modulators led to cell ATP depletion and altered lactic acid production and glucose consumption, resulting in increased sensitivity to paclitaxel and doxorubicin. Overall, this study supports the potential use of compounds targeting cell metabolism and tumor microenvironment factors such as pH, as co-adjuvants in conventional chemotherapy.


Current Genetics | 2007

Functional analysis of Kluyveromyces lactis carboxylic acids permeases: heterologous expression of KlJEN1 and KlJEN2 genes.

Odília Queirós; Leonor Pereira; Sandra Paiva; Pedro Moradas-Ferreira; Margarida Casal

The present work describes a detailed physiological and molecular characterization of the mechanisms of transport of carboxylic acids in Kluyveromyces lactis. This yeast species presents two homologue genes to JEN1 of Saccharomyces cerevisiae: KlJEN1 encodes a monocarboxylate permease and KlJEN2 encodes a dicarboxylic acid permease. In the strain K.lactis GG1888, expression of these genes does not require an inducer and activity for both transport systems was observed in glucose-grown cells. To confirm their key role for carboxylic acids transport in K. lactis, null mutants were analyzed. Heterologous expression in S. cerevisiae has been performed and chimeric fusions with GFP showed their proper localization in the plasma membrane. S. cerevisiae jen1Δ cells transformed with KlJEN1 recovered the capacity to use lactic acid, as well as to transport labeled lactic acid by a mediated mechanism. When KlJEN2 was heterologously expressed, S. cerevisiae transformants gained the ability to transport labeled succinic and malic acids by a mediated mechanism, exhibiting, however, a poor growth in malic acid containing media. The results confirmed the role of KlJen1p and KlJen2p as mono and dicarboxylic acids permeases, respectively, not subjected to glucose repression, being fully functional in S. cerevisiae.


Drug Metabolism Reviews | 2016

Comparative metabolism of tramadol and tapentadol: a toxicological perspective.

Joana Barbosa; Juliana Faria; Odília Queirós; Roxana Moreira; Félix Carvalho; Ricardo Jorge Dinis-Oliveira

Abstract Tramadol and tapentadol are centrally acting, synthetic opioid analgesics used in the treatment of moderate to severe pain. Main metabolic patterns for these drugs in humans are well characterized. Tramadol is mainly metabolized by cytochrome P450 CYP2D6 to O-desmethyltramadol (M1), its main active metabolite. M1 and tapentadol undergo mainly glucuronidation reactions. On the other hand, the pharmacokinetics of tramadol and tapentadol are dependent on multiple factors, such as the route of administration, genetic variability in pharmacokinetic components and concurrent consumption of other drugs. This review aims to comparatively discuss the metabolomics of tramadol and tapentadol, namely by presenting all their known metabolites. An exhaustive literature search was performed using textual and structural queries for tramadol and tapentadol, and associated known metabolizing enzymes and metabolites. A thorough knowledge about tramadol and tapentadol metabolomics is expected to provide additional insights to better understand the interindividual variability in their pharmacokinetics and dose-responsiveness, and contribute to the establishment of personalized therapeutic approaches, minimizing side effects and optimizing analgesic efficacy.


Toxicology | 2016

Comparative study of the neurotoxicological effects of tramadol and tapentadol in SH-SY5Y cells

Juliana Faria; Joana Barbosa; Odília Queirós; Roxana Moreira; Félix Carvalho; Ricardo Jorge Dinis-Oliveira

Opioid therapy and abuse are increasing, justifying the need to study their toxicity and underlying mechanisms. Given opioid pharmacodynamics at the central nervous system, the analysis of toxic effects in neuronal models gains particular relevance. The aim of this study was to compare the toxicological effects of acute exposure to tramadol and tapentadol in the undifferentiated human SH-SY5Y neuroblastoma cell line. Upon exposure to tramadol and tapentadol concentrations up to 600μM, cell toxicity was assessed through evaluation of oxidative stress, mitochondrial and metabolic alterations, as well as cell viability and death mechanisms through necrosis or apoptosis, and related signalling. Tapentadol was observed to trigger much more prominent toxic effects than tramadol, ultimately leading to energy deficit and cell death. Cell death was shown to predominantly occur through necrosis, with no alterations in membrane potential or in cytochrome c release. Both drugs were shown to stimulate glucose uptake and to cause ATP depletion, due to changes in the expression of energy metabolism enzymes. The toxicity mechanisms in such a neuronal model are relevant to understand adverse reactions to these opioids and to contribute to dose adjustment in order to avoid neurological damage.


Journal of Bioenergetics and Biomembranes | 2016

The anticancer agent 3-bromopyruvate: a simple but powerful molecule taken from the lab to the bedside

João Azevedo-Silva; Odília Queirós; Fátima Baltazar; Stanisław Ułaszewski; André Goffeau; Young H. Ko; Peter L. Pedersen; Ana Preto; Margarida Casal

At the beginning of the twenty-first century, 3-bromopyruvate (3BP), a simple alkylating chemical compound was presented to the scientific community as a potent anticancer agent, able to cause rapid toxicity to cancer cells without bystander effects on normal tissues. The altered metabolism of cancers, an essential hallmark for their progression, also became their Achilles heel by facilitating 3BP’s selective entry and specific targeting. Treatment with 3BP has been administered in several cancer type models both in vitro and in vivo, either alone or in combination with other anticancer therapeutic approaches. These studies clearly demonstrate 3BP’s broad action against multiple cancer types. Clinical trials using 3BP are needed to further support its anticancer efficacy against multiple cancer types thus making it available to more than 30 million patients living with cancer worldwide. This review discusses current knowledge about 3BP related to cancer and discusses also the possibility of its use in future clinical applications as it relates to safety and treatment issues.


Seminars in Cancer Biology | 2017

Value of pH regulators in the diagnosis, prognosis and treatment of cancer

Sara Granja; Diana Tavares-Valente; Odília Queirós; Fátima Baltazar

Altered metabolism, associated with acidification of the extracellular milieu, is one of the major features of cancer. As pH regulation is crucial for the maintenance of all biological functions, cancer cells rely on the activity of lactate exporters and proton transporters to regulate their intracellular pH. The major players in cancer pH regulation are proton pump ATPases, sodium-proton exchangers (NHEs), monocarboxylate transporters (MCTs), carbonic anhydrases (CAs) and anion exchangers (AEs), which have been shown to be upregulated in several human malignancies. Thanks to the activity of the proton pumps and transporters, tumours acidify their microenvironment, becoming more aggressive and resistant to therapy. Thus, targeting tumour pH may contribute to more effective anticancer strategies for controlling tumour progression and therapeutic resistance. In the present study, we review the role of the main pH regulators expressed in human cancer cells, including their diagnostic and prognostic value, as well as their usefulness as therapeutic targets.

Collaboration


Dive into the Odília Queirós's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge