Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ola Epemolu is active.

Publication


Featured researches published by Ola Epemolu.


Cell | 2017

Development of a Novel Lead that Targets M. tuberculosis Polyketide Synthase 13.

Anup Aggarwal; Maloy K. Parai; Nishant D. Shetty; Deeann Wallis; Lisa K. Woolhiser; Courtney Hastings; Noton K. Dutta; Stacy Galaviz; Ramesh C. Dhakal; Rupesh Shrestha; Shoko Wakabayashi; Chris Walpole; David A. Matthews; David M. Floyd; Paul Scullion; Jennifer Riley; Ola Epemolu; Suzanne Norval; Thomas Snavely; Gregory T. Robertson; Eric J. Rubin; Thomas R. Ioerger; Frik A. Sirgel; Ruben Gerhard van der Merwe; Paul D. van Helden; Peter M. Keller; Erik C. Böttger; Petros C. Karakousis; Anne J. Lenaerts; James C. Sacchettini

Summary Widespread resistance to first-line TB drugs is a major problem that will likely only be resolved through the development of new drugs with novel mechanisms of action. We have used structure-guided methods to develop a lead molecule that targets the thioesterase activity of polyketide synthase Pks13, an essential enzyme that forms mycolic acids, required for the cell wall of Mycobacterium tuberculosis. Our lead, TAM16, is a benzofuran class inhibitor of Pks13 with highly potent in vitro bactericidal activity against drug-susceptible and drug-resistant clinical isolates of M. tuberculosis. In multiple mouse models of TB infection, TAM16 showed in vivo efficacy equal to the first-line TB drug isoniazid, both as a monotherapy and in combination therapy with rifampicin. TAM16 has excellent pharmacological and safety profiles, and the frequency of resistance for TAM16 is ∼100-fold lower than INH, suggesting that it can be developed as a new antitubercular aimed at the acute infection. PaperClip


ACS Infectious Diseases | 2017

Essential but Not Vulnerable: Indazole Sulfonamides Targeting Inosine Monophosphate Dehydrogenase as Potential Leads against Mycobacterium tuberculosis

Yumi Park; Angela Pacitto; Tracy Bayliss; Laura A. T. Cleghorn; Zhe Wang; Travis Hartman; Kriti Arora; Thomas R. Ioerger; James C. Sacchettini; Menico Rizzi; Stefano Donini; Tom L. Blundell; David B. Ascher; Kyu Y. Rhee; Ardala Breda; Nian Zhou; Véronique Dartois; Surendranadha Reddy Jonnala; Laura E. Via; Valerie Mizrahi; Ola Epemolu; Laste Stojanovski; Fred Simeons; Maria Osuna-Cabello; Lucy Ellis; Claire J. Mackenzie; Alasdair R. C. Smith; Susan H. Davis; Dinakaran Murugesan; Kirsteen I. Buchanan

A potent, noncytotoxic indazole sulfonamide was identified by high-throughput screening of >100,000 synthetic compounds for activity against Mycobacterium tuberculosis (Mtb). This noncytotoxic compound did not directly inhibit cell wall biogenesis but triggered a slow lysis of Mtb cells as measured by release of intracellular green fluorescent protein (GFP). Isolation of resistant mutants followed by whole-genome sequencing showed an unusual gene amplification of a 40 gene region spanning from Rv3371 to Rv3411c and in one case a potential promoter mutation upstream of guaB2 (Rv3411c) encoding inosine monophosphate dehydrogenase (IMPDH). Subsequent biochemical validation confirmed direct inhibition of IMPDH by an uncompetitive mode of inhibition, and growth inhibition could be rescued by supplementation with guanine, a bypass mechanism for the IMPDH pathway. Beads containing immobilized indazole sulfonamides specifically interacted with IMPDH in cell lysates. X-ray crystallography of the IMPDH-IMP-inhibitor complex revealed that the primary interactions of these compounds with IMPDH were direct pi-pi interactions with the IMP substrate. Advanced lead compounds in this series with acceptable pharmacokinetic properties failed to show efficacy in acute or chronic murine models of tuberculosis (TB). Time-kill experiments in vitro suggest that sustained exposure to drug concentrations above the minimum inhibitory concentration (MIC) for 24 h were required for a cidal effect, levels that have been difficult to achieve in vivo. Direct measurement of guanine levels in resected lung tissue from tuberculosis-infected animals and patients revealed 0.5-2 mM concentrations in caseum and normal lung tissue. The high lesional levels of guanine and the slow lytic, growth-rate-dependent effect of IMPDH inhibition pose challenges to developing drugs against this target for use in treating TB.


Nature Communications | 2016

Potent and selective chemical probe of hypoxic signalling downstream of HIF-α hydroxylation via VHL inhibition

Julianty Frost; Carles Galdeano; Pedro Soares; Morgan Stuart Gadd; Katarzyna M Grzes; Lucy Ellis; Ola Epemolu; Satoko Shimamura; Marcus Bantscheff; Paola Grandi; Kevin D. Read; Doreen A. Cantrell; Sonia Rocha; Alessio Ciulli

Chemical strategies to using small molecules to stimulate hypoxia inducible factors (HIFs) activity and trigger a hypoxic response under normoxic conditions, such as iron chelators and inhibitors of prolyl hydroxylase domain (PHD) enzymes, have broad-spectrum activities and off-target effects. Here we disclose VH298, a potent VHL inhibitor that stabilizes HIF-α and elicits a hypoxic response via a different mechanism, that is the blockade of the VHL:HIF-α protein–protein interaction downstream of HIF-α hydroxylation by PHD enzymes. We show that VH298 engages with high affinity and specificity with VHL as its only major cellular target, leading to selective on-target accumulation of hydroxylated HIF-α in a concentration- and time-dependent fashion in different cell lines, with subsequent upregulation of HIF-target genes at both mRNA and protein levels. VH298 represents a high-quality chemical probe of the HIF signalling cascade and an attractive starting point to the development of potential new therapeutics targeting hypoxia signalling.


Journal of Medicinal Chemistry | 2017

Group-based optimization of potent and cell-active inhibitors of the von Hippel-Lindau (VHL) E3 ubiquitin ligase: structure-activity relationships leading to the chemical probe (2S,4R)-1-((S)-2-(1-cyanocyclopropanecarboxamido)-3,3-dimethylbutanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide (VH298).

Pedro Soares; Morgan Stuart Gadd; Julianty Frost; Carles Galdeano; Lucy Ellis; Ola Epemolu; Sonia Rocha; Kevin D. Read; Alessio Ciulli

The von Hippel–Lindau tumor suppressor protein is the substrate binding subunit of the VHL E3 ubiquitin ligase, which targets hydroxylated α subunit of hypoxia inducible factors (HIFs) for ubiquitination and subsequent proteasomal degradation. VHL is a potential target for treating anemia and ischemic diseases, motivating the development of inhibitors of the VHL:HIF-α protein–protein interaction. Additionally, bifunctional proteolysis targeting chimeras (PROTACs) containing a VHL ligand can hijack the E3 ligase activity to induce degradation of target proteins. We report the structure-guided design and group-based optimization of a series of VHL inhibitors with low nanomolar potencies and improved cellular permeability. Structure–activity relationships led to the discovery of potent inhibitors 10 and chemical probe VH298, with dissociation constants <100 nM, which induced marked HIF-1α intracellular stabilization. Our study provides new chemical tools to probe the VHL-HIF pathways and new VHL ligands for next-generation PROTACs.


ACS Infectious Diseases | 2018

2-Mercapto-Quinazolinones as Inhibitors of Type II NADH Dehydrogenase and Mycobacterium tuberculosis: Structure–Activity Relationships, Mechanism of Action and Absorption, Distribution, Metabolism, and Excretion Characterization

Dinakaran Murugesan; Peter Ray; Tracy Bayliss; Gareth Prosser; Justin R. Harrison; Kirsteen Green; Candice Soares de Melo; Tzu-Shean Feng; Leslie J. Street; Kelly Chibale; Digby F. Warner; Valerie Mizrahi; Ola Epemolu; Paul Scullion; Lucy Ellis; Jennifer Riley; Yoko Shishikura; Liam Ferguson; Maria Osuna-Cabello; Kevin D. Read; Simon R. Green; Dirk A. Lamprecht; Peter M. Finin; Adrie J. C. Steyn; Thomas R. Ioerger; James C. Sacchettini; Kyu Y. Rhee; Kriti Arora; Clifton E. Barry; Paul G. Wyatt

Mycobacterium tuberculosis (MTb) possesses two nonproton pumping type II NADH dehydrogenase (NDH-2) enzymes which are predicted to be jointly essential for respiratory metabolism. Furthermore, the structure of a closely related bacterial NDH-2 has been reported recently, allowing for the structure-based design of small-molecule inhibitors. Herein, we disclose MTb whole-cell structure–activity relationships (SARs) for a series of 2-mercapto-quinazolinones which target the ndh encoded NDH-2 with nanomolar potencies. The compounds were inactivated by glutathione-dependent adduct formation as well as quinazolinone oxidation in microsomes. Pharmacokinetic studies demonstrated modest bioavailability and compound exposures. Resistance to the compounds in MTb was conferred by promoter mutations in the alternative nonessential NDH-2 encoded by ndhA in MTb. Bioenergetic analyses revealed a decrease in oxygen consumption rates in response to inhibitor in cells in which membrane potential was uncoupled from ATP production, while inverted membrane vesicles showed mercapto-quinazolinone-dependent inhibition of ATP production when NADH was the electron donor to the respiratory chain. Enzyme kinetic studies further demonstrated noncompetitive inhibition, suggesting binding of this scaffold to an allosteric site. In summary, while the initial MTb SAR showed limited improvement in potency, these results, combined with structural information on the bacterial protein, will aid in the future discovery of new and improved NDH-2 inhibitors.


Forensic Toxicology | 2018

Chemical synthesis, characterisation and in vitro and in vivo metabolism of the synthetic opioid MT-45 and its newly identified fluorinated analogue 2F-MT-45 with metabolite confirmation in urine samples from known drug users

Craig McKenzie; Oliver B. Sutcliffe; Kevin D. Read; Paul Scullion; Ola Epemolu; Daniel Fletcher; Anders Helander; Olof Beck; Alexia Rylski; Lysbeth H. Antonides; Jennifer Riley; Shannah A. Smith; Niamh Nic Daeid

PurposeThe detection of a novel psychoactive substance, 2F-MT-45, a fluorinated analogue of the synthetic opioid MT-45, was reported in a single seized tablet. MT-45, 2F-, 3F- and 4F-MT-45 were synthesised and reference analytical data were reported. The in vitro and in vivo metabolisms of MT-45 and 2F-MT-45 were investigated.MethodThe reference standards and seized sample were characterised using nuclear magnetic resonance spectroscopy, ultra-performance liquid chromatography–quadrupole time of flight mass spectrometry, gas chromatography–mass spectrometry, attenuated total reflectance-Fourier transform infrared spectroscopy and Raman spectroscopy. Presumptive tests were performed and physicochemical properties of the compounds determined. Metabolite identification studies using human liver microsomes, human hepatocytes, mouse hepatocytes and in vivo testing using mice were performed and identified MT-45 metabolites were confirmed in authentic human urine samples.ResultsMetabolic pathways identified for MT-45 and 2F-MT-45 were N-dealkylation, hydroxylation and subsequent glucuronidation. The major MT-45 metabolites identified in human in vitro studies and in authenticated human urine were phase I metabolites and should be incorporated as analytical targets to existing toxicological screening methods. Phase II glucuronidated metabolites were present in much lower proportions.Conclusions2F-MT-45 has been detected in a seized tablet for the first time. The metabolite identification data provide useful urinary metabolite targets for forensic and clinical testing for MT-45 and allows screening of urine for 2F-MT-45 and its major metabolites to determine its prevalence in case work.


ACS Infectious Diseases | 2017

Chemical Validation of Methionyl-tRNA Synthetase as a Druggable Target in Leishmania donovani

Leah S. Torrie; Stephen Brand; David A. Robinson; Eun Jung Ko; Laste Stojanovski; Frederick R. C. Simeons; Susan Wyllie; John Thomas; Lucy Ellis; Maria Osuna-Cabello; Ola Epemolu; Andrea Nühs; Jennifer Riley; Lorna MacLean; Sujatha Manthri; Kevin D. Read; Ian H. Gilbert; Alan H. Fairlamb; Manu De Rycker

Methionyl-tRNA synthetase (MetRS) has been chemically validated as a drug target in the kinetoplastid parasite Trypanosoma brucei. In the present study, we investigate the validity of this target in the related trypanosomatid Leishmania donovani. Following development of a robust high-throughput compatible biochemical assay, a compound screen identified DDD806905 as a highly potent inhibitor of LdMetRS (Ki of 18 nM). Crystallography revealed this compound binds to the methionine pocket of MetRS with enzymatic studies confirming DDD806905 displays competitive inhibition with respect to methionine and mixed inhibition with respect to ATP binding. DDD806905 showed activity, albeit with different levels of potency, in various Leishmania cell-based viability assays, with on-target activity observed in both Leishmania promastigote cell assays and a Leishmania tarentolae in vitro translation assay. Unfortunately, this compound failed to show efficacy in an animal model of leishmaniasis. We investigated the potential causes for the discrepancies in activity observed in different Leishmania cell assays and the lack of efficacy in the animal model and found that high protein binding as well as sequestration of this dibasic compound into acidic compartments may play a role. Despite medicinal chemistry efforts to address the dibasic nature of DDD806905 and analogues, no progress could be achieved with the current chemical series. Although DDD806905 is not a developable antileishmanial compound, MetRS remains an attractive antileishmanial drug target.


Journal of Medicinal Chemistry | 2018

Identification of Morpholino Thiophenes as Novel Mycobacterium tuberculosis Inhibitors, Targeting QcrB

Laura A. T. Cleghorn; Peter Ray; Joshua Odingo; Anuradha Kumar; Heather Wescott; Aaron Korkegian; Thierry Masquelin; Abraham L. Moure; Caroline Wilson; Susan Davis; Margaret Huggett; Penelope A Turner; Alasdair Smith; Ola Epemolu; Fabio Zuccotto; Jennifer Riley; Paul Scullion; Yoko Shishikura; Liam Ferguson; Joaquín Rullas; Laura Guijarro; Kevin D. Read; Simon R. Green; Philip Arthur Hipskind; Tanya Parish; Paul G. Wyatt

With the emergence of multidrug-resistant strains of Mycobacterium tuberculosis there is a pressing need for new oral drugs with novel mechanisms of action. Herein, we describe the identification of a novel morpholino–thiophenes (MOT) series following phenotypic screening of the Eli Lilly corporate library against M. tuberculosis strain H37Rv. The design, synthesis, and structure–activity relationships of a range of analogues around the confirmed actives are described. Optimized leads with potent whole cell activity against H37Rv, no cytotoxicity flags, and in vivo efficacy in an acute murine model of infection are described. Mode-of-action studies suggest that the novel scaffold targets QcrB, a subunit of the menaquinol cytochrome c oxidoreductase, part of the bc1-aa3-type cytochrome c oxidase complex that is responsible for driving oxygen-dependent respiration.


Bioorganic & Medicinal Chemistry Letters | 2018

Discovery of super soft-drug modulators of sphingosine-1-phosphate receptor 1

Mark Bell; David Foley; Claire Naylor; Colin Robinson; Jennifer Riley; Ola Epemolu; Paul Scullion; Yoko Shishikura; Elad Katz; W.H. Irwin McLean; Paul G. Wyatt; Kevin D. Read; Andrew Woodland

Graphical abstract


ACS Infectious Diseases | 2018

Perspective: Pharmacokinetics of Beta lactam antibiotics: Clues from the past to help discover long acting oral drugs in the future

Paul W. Smith; Fabio Zuccotto; Robert H. Bates; María S. Martínez-Martínez; Kevin D. Read; Caroline Peet; Ola Epemolu

β-Lactams represent perhaps the most important class of antibiotics yet discovered. However, despite many years of active research, none of the currently approved drugs in this class combine oral activity with long duration of action. Recent developments suggest that new β-lactam antibiotics with such a profile would have utility in the treatment of tuberculosis. Consequently, the historical β-lactam pharmacokinetic data have been compiled and analyzed to identify possible directions and drug discovery strategies aimed toward new β-lactam antibiotics with this profile.

Collaboration


Dive into the Ola Epemolu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge