Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olaf Kruse is active.

Publication


Featured researches published by Olaf Kruse.


Journal of Biotechnology | 2010

Microalgae as substrates for fermentative biogas production in a combined biorefinery concept

Jan H. Mussgnug; Viktor Klassen; Andreas Schlüter; Olaf Kruse

Most organic matter can be used for bioenergy generation via anaerobic fermentation. Today, crop plants like maize play the dominant role as substrates for renewable biogas production. In this work we investigated the suitability of six dominant microalgae species (freshwater and saltwater algae and cyanobacteria) as alternative substrates for biogas production. We could demonstrate that the biogas potential is strongly dependent on the species and on the pretreatment. Fermentation of the green alga Chlamydomonas reinhardtii was efficient with a production of 587 ml(±8.8 SE) biogas g volatile solids(-1) (VS(-1)), whereas fermentation of Scenedesmus obliquus was inefficient with only 287 ml(±10.1 SE) biogas g VS(-1) being produced. Drying as a pretreatment decreased the amount of biogas production to ca. 80%. The methane content of biogas from microalgae was 7-13% higher compared to biogas from maize silage. To evaluate integrative biorefinery concepts, hydrogen production in C. reinhardtii prior to anaerobic fermentation of the algae biomass was measured and resulted in an increase of biogas generation to 123% (±3.7 SE). We conclude that selected algae species can be good substrates for biogas production and that anaerobic fermentation can seriously be considered as final step in future microalgae-based biorefinery concepts.


Nature Biotechnology | 2010

An economic and technical evaluation of microalgal biofuels

Evan Stephens; Ian L. Ross; Zachary A. King; Jan H. Mussgnug; Olaf Kruse; Clemens Posten; Michael A. Borowitzka; Ben Hankamer

In her News Feature “Biotech’s green gold”, Emily Waltz details the ‘hype’ being propagated around emerging microalgal biofuel technologies, which often exceeds the physical and thermodynamic constraints that ultimately define their economic viability. Our calculations counter such excessive claims and demonstrate that 22 MJ m−2 d−1 solar radiation supports practical yield maxima of ∼60 to 100 kl oil ha−1 y−1 (∼6,600 to 10,800 gal ac−1 y−1) and an absolute theoretical ceiling of ∼94 to 155 kl oil ha−1 y−1, assuming a maximum photosynthetic conversion efficiency of 10%. To evaluate claims and provide an accurate analysis of the potential of microalgal biofuel systems, we have conducted industrial feasibility studies and sensitivity analyses based on peer-reviewed data and industrial expertise. Given that microalgal biofuel research is still young and its development still in flux, we anticipate that the stringent assessment of the technologys economic potential presented below will assist R&D investment and policy development in the area going forward.


Journal of Biological Chemistry | 2005

Improved Photobiological H2 Production in Engineered Green Algal Cells

Olaf Kruse; Jens Rupprecht; Klaus-Peter Bader; Skye R. Thomas-Hall; Peer M. Schenk; Giovanni Finazzi; Ben Hankamer

Oxygenic photosynthetic organisms use solar energy to split water (H2O) into protons (H+), electrons (e-), and oxygen. A select group of photosynthetic microorganisms, including the green alga Chlamydomonas reinhardtii, has evolved the additional ability to redirect the derived H+ and e- to drive hydrogen (H2) production via the chloroplast hydrogenases HydA1 and A2 (H2 ase). This process occurs under anaerobic conditions and provides a biological basis for solar-driven H2 production. However, its relatively poor yield is a major limitation for the economic viability of this process. To improve H2 production in Chlamydomonas, we have developed a new approach to increase H+ and e- supply to the hydrogenases. In a first step, mutants blocked in the state 1 transition were selected. These mutants are inhibited in cyclic e- transfer around photosystem I, eliminating possible competition for e- with H2ase. Selected strains were further screened for increased H2 production rates, leading to the isolation of Stm6. This strain has a modified respiratory metabolism, providing it with two additional important properties as follows: large starch reserves (i.e. enhanced substrate availability), and a low dissolved O2 concentration (40% of the wild type (WT)), resulting in reduced inhibition of H2ase activation. The H2 production rates of Stm6 were 5-13 times that of the control WT strain over a range of conditions (light intensity, culture time, ± uncoupler). Typically, ∼540 ml of H2 liter-1 culture (up to 98% pure) were produced over a 10-14-day period at a maximal rate of 4 ml h-1 (efficiency = ∼5 times the WT). Stm6 therefore represents an important step toward the development of future solar-powered H2 production systems.


Journal of Biotechnology | 2008

The metagenome of a biogas-producing microbial community of a production-scale biogas plant fermenter analysed by the 454-pyrosequencing technology

Andreas Schlüter; Thomas Bekel; Naryttza N. Diaz; Michael Dondrup; Rudolf Eichenlaub; Karl-Heinz Gartemann; Irene Krahn; Lutz Krause; Holger Krömeke; Olaf Kruse; Jan H. Mussgnug; Heiko Neuweger; Karsten Niehaus; Alfred Pühler; Kai J. Runte; Rafael Szczepanowski; Andreas Tauch; Alexandra Tilker; Prisca Viehöver; Alexander Goesmann

Composition and gene content of a biogas-producing microbial community from a production-scale biogas plant fed with renewable primary products was analysed by means of a metagenomic approach applying the ultrafast 454-pyrosequencing technology. Sequencing of isolated total community DNA on a Genome Sequencer FLX System resulted in 616,072 reads with an average read length of 230 bases accounting for 141,664,289 bases sequence information. Assignment of obtained single reads to COG (Clusters of Orthologous Groups of proteins) categories revealed a genetic profile characteristic for an anaerobic microbial consortium conducting fermentative metabolic pathways. Assembly of single reads resulted in the formation of 8752 contigs larger than 500 bases in size. Contigs longer than 10kb mainly encode house-keeping proteins, e.g. DNA polymerase, recombinase, DNA ligase, sigma factor RpoD and genes involved in sugar and amino acid metabolism. A significant portion of contigs was allocated to the genome sequence of the archaeal methanogen Methanoculleus marisnigri JR1. Mapping of single reads to the M. marisnigri JR1 genome revealed that approximately 64% of the reference genome including methanogenesis gene regions are deeply covered. These results suggest that species related to those of the genus Methanoculleus play a dominant role in methanogenesis in the analysed fermentation sample. Moreover, assignment of numerous contig sequences to clostridial genomes including gene regions for cellulolytic functions indicates that clostridia are important for hydrolysis of cellulosic plant biomass in the biogas fermenter under study. Metagenome sequence data from a biogas-producing microbial community residing in a fermenter of a biogas plant provide the basis for a rational approach to improve the biotechnological process of biogas production.


Trends in Plant Science | 2010

Future prospects of microalgal biofuel production systems.

Evan Stephens; Ian L. Ross; Jan H. Mussgnug; Liam Wagner; Michael A. Borowitzka; Clemens Posten; Olaf Kruse; Ben Hankamer

Climate change mitigation, economic growth and stability, and the ongoing depletion of oil reserves are all major drivers for the development of economically rational, renewable energy technology platforms. Microalgae have re-emerged as a popular feedstock for the production of biofuels and other more valuable products. Even though integrated microalgal production systems have some clear advantages and present a promising alternative to highly controversial first generation biofuel systems, the associated hype has often exceeded the boundaries of reality. With a growing number of recent analyses demonstrating that despite the hype, these systems are conceptually sound and potentially sustainable given the available inputs, we review the research areas that are key to attaining economic reality and the future development of the industry.


Current Opinion in Biotechnology | 2013

Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae

René H. Wijffels; Olaf Kruse; Klaas J. Hellingwerf

Both cyanobacteria and eukaryotic microalgae are promising organisms for sustainable production of bulk products such as food, feed, materials, chemicals and fuels. In this review we will summarize the potential and current biotechnological developments. Cyanobacteria are promising host organisms for the production of small molecules that can be secreted such as ethanol, butanol, fatty acids and other organic acids. Eukaryotic microalgae are interesting for products for which cellular storage is important such as proteins, lipids, starch and alkanes. For the development of new and promising lines of production, strains of both cyanobacteria and eukaryotic microalgae have to be improved. Transformation systems have been much better developed in cyanobacteria. However, several products would be preferably produced with eukaryotic microalgae. In the case of cyanobacteria a synthetic-systems biology approach has a great potential to exploit cyanobacteria as cell factories. For eukaryotic microalgae transformation systems need to be further developed. A promising strategy is transformation of heterologous (prokaryotic and eukaryotic) genes in established eukaryotic hosts such as Chlamydomonas reinhardtii. Experimental outdoor pilots under containment for the production of genetically modified cyanobacteria and microalgae are in progress. For full scale production risks of release of genetically modified organisms need to be assessed.


The Plant Cell | 2003

FtsH Is Involved in the Early Stages of Repair of Photosystem II in Synechocystis sp PCC 6803

Paulo Silva; Elinor Thompson; Shaun Bailey; Olaf Kruse; Conrad W. Mullineaux; Colin Robinson; Nicholas H. Mann; Peter J. Nixon

When plants, algae, and cyanobacteria are exposed to excessive light, especially in combination with other environmental stress conditions such as extreme temperatures, their photosynthetic performance declines. A major cause of this photoinhibition is the light-induced irreversible photodamage to the photosystem II (PSII) complex responsible for photosynthetic oxygen evolution. A repair cycle operates to selectively replace a damaged D1 subunit within PSII with a newly synthesized copy followed by the light-driven reactivation of the complex. Net loss of PSII activity occurs (photoinhibition) when the rate of damage exceeds the rate of repair. The identities of the chaperones and proteases involved in the replacement of D1 in vivo remain uncertain. Here, we show that one of the four members of the FtsH family of proteases (cyanobase designation slr0228) found in the cyanobacterium Synechocystis sp PCC 6803 is important for the repair of PSII and is vital for preventing chronic photoinhibition. Therefore, the ftsH gene family is not functionally redundant with respect to the repair of PSII in this organism. Our data also indicate that FtsH binds directly to PSII, is involved in the early steps of D1 degradation, and is not restricted to the removal of D1 fragments. These results, together with the recent analysis of ftsH mutants of Arabidopsis, highlight the critical role played by FtsH proteases in the removal of damaged D1 from the membrane and the maintenance of PSII activity in vivo.


Trends in Biotechnology | 2012

Selection, breeding and engineering of microalgae for bioenergy and biofuel production.

Anthony W. D. Larkum; Ian L. Ross; Olaf Kruse; Ben Hankamer

Microalgal production technologies are seen as increasingly attractive for bioenergy production to improve fuel security and reduce CO(2) emissions. Photosynthetically derived fuels are a renewable, potentially carbon-neutral and scalable alternative reserve. Microalgae have particular promise because they can be produced on non-arable land and utilize saline and wastewater streams. Furthermore, emerging microalgal technologies can be used to produce a range of products such as biofuels, protein-rich animal feeds, chemical feedstocks (e.g. bioplastic precursors) and higher-value products. This review focuses on the selection, breeding and engineering of microalgae for improved biomass and biofuel conversion efficiencies.


Physiologia Plantarum | 2007

Photosynthetic biomass and H2 production by green algae: from bioengineering to bioreactor scale-up

Ben Hankamer; Florian Lehr; Jens Rupprecht; Jan H. Mussgnug; Clemens Posten; Olaf Kruse

The development of clean borderless fuels is of vital importance to human and environmental health and global prosperity. Currently, fuels make up approximately 67% of the global energy market (total market = 15 TW year(-1)) (Hoffert et al. 1998). In contrast, global electricity demand accounts for only 33% (Hoffert et al. 1998). Yet, despite the importance of fuels, almost all CO(2) free energy production systems under development are designed to drive electricity generation (e.g. clean-coal technology, nuclear, photovoltaic, wind, geothermal, wave and hydroelectric). In contrast, and indeed almost uniquely, biofuels also target the much larger fuel market and so in the future will play an increasingly important role in maintaining energy security (Lal 2005). Currently, the main biofuels that are at varying stages of development include bio-ethanol, liquid carbohydrates [e.g. biodiesel or biomass to liquid (BTL) products], biomethane and bio-H(2). This review is focused on placing bio-H(2) production processes into the context of the current biofuels market and summarizing advances made both at the level of bioengineering and bioreactor design.


Applied Microbiology and Biotechnology | 2006

Perspectives and advances of biological H2 production in microorganisms

Jens Rupprecht; Ben Hankamer; Jan H. Mussgnug; Gennady Ananyev; Charles Dismukes; Olaf Kruse

The rapid development of clean fuels for the future is a critically important global challenge for two main reasons. First, new fuels are needed to supplement and ultimately replace depleting oil reserves. Second, fuels capable of zero CO2 emissions are needed to slow the impact of global warming. This review summarizes the development of solar powered bio-H2 production processes based on the conversion of photosynthetic products by fermentative bacteria, as well as using photoheterotrophic and photoautrophic organisms. The use of advanced bioreactor systems and their potential and limitations in terms of process design, efficiency, and cost are also briefly reviewed.

Collaboration


Dive into the Olaf Kruse's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ben Hankamer

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Clemens Posten

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jens Rupprecht

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge