Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ole Kristensen is active.

Publication


Featured researches published by Ole Kristensen.


Journal of Immunology | 2005

The Crystal Structure of Recombinant proDer p 1, a Major House Dust Mite Proteolytic Allergen

K. Meno; Peter Thorsted; H. Ipsen; Ole Kristensen; Jørgen Nedergaard Larsen; Michael D. Spangfort; Michael Gajhede; Kaare Lund

Allergy to house dust mite is among the most prevalent allergic diseases worldwide. Most house dust mite allergic patients react to Der p 1 from Dermatophagoides pteronyssinus, which is a cysteine protease. To avoid heterogeneity in the sample used for crystallization, a modified recombinant molecule was produced. The sequence of the proDer p 1 allergen was modified to reduce glycosylation and to abolish enzymatic activity. The resulting rproDer p 1 preparation was homogenous and stable and yielded crystals diffracting to a resolution of 1.61 Å. The active site is located in a large cleft on the surface of the molecule. The 80-aa pro-peptide adopts a unique fold that interacts with the active site cleft and a substantial adjacent area on the mature region, excluding access to the cleft and the active site. Studies performed using crossed-line immunoelectrophoresis and IgE inhibition experiments indicated that several epitopes are covered by the pro-peptide and that the epitopes on the recombinant mature molecule are indistinguishable from those on the natural one. The structure confirms previous results suggesting a preference for aliphatic residues in the important P2 position in substrates. Sequence variations in related species are concentrated on the surface, which explains the existence of cross-reacting and species-specific antibodies. This study describes the first crystal structure of one of the clinically most important house dust mite allergens, the cysteine protease Der p 1.


The EMBO Journal | 2006

A unique set of SH3-SH3 interactions controls IB1 homodimerization.

Ole Kristensen; Sylvie Guenat; Imran Dar; Nathalie Allaman-Pillet; Amar Abderrahmani; Mourad Ferdaoussi; Raphaël Roduit; Fabienne Maurer; Jacques S. Beckmann; Jette S. Kastrup; Michael Gajhede; Christophe Bonny

Islet‐brain 1 (IB1 or JIP‐1) is a scaffold protein that interacts with components of the c‐Jun N‐terminal kinase (JNK) signal‐transduction pathway. IB1 is expressed at high levels in neurons and in pancreatic β‐cells, where it controls expression of several insulin‐secretory components and secretion. IB1 has been shown to homodimerize, but neither the molecular mechanisms nor the function of dimerization have yet been characterized. Here, we show that IB1 homodimerizes through a novel and unique set of Src homology 3 (SH3)–SH3 interactions. X‐ray crystallography studies show that the dimer interface covers a region usually engaged in PxxP‐mediated ligand recognition, even though the IB1 SH3 domain lacks this motif. The highly stable IB1 homodimer can be significantly destabilized in vitro by three individual point mutations directed against key residues involved in dimerization. Each mutation reduces IB1‐dependent basal JNK activity in 293T cells. Impaired dimerization also results in a reduction in glucose transporter type 2 expression and in glucose‐dependent insulin secretion in pancreatic β‐cells. Taken together, these results indicate that IB1 homodimerization through its SH3 domain has pleiotropic effects including regulation of the insulin secretion process.


FEBS Letters | 2005

Structure of the house dust mite allergen Der f 2: implications for function and molecular basis of IgE cross-reactivity.

Birthe R. Johannessen; Lars K. Skov; Jette S. Kastrup; Ole Kristensen; Caroline Bolwig; Jørgen Nedergaard Larsen; Michael D. Spangfort; Kaare Lund; Michael Gajhede

The X‐ray structure of the group 2 major allergen from Dermatophagoides farinae (Der f 2) was determined to 1.83 Å resolution. The overall Der f 2 structure comprises a single domain of immunoglobulin fold with two anti‐parallel β‐sheets. A large hydrophobic cavity is formed in the interior of Der f 2. Structural comparisons to distantly related proteins suggest a role in lipid binding. Immunoglobulin E (IgE) cross‐reactivity between group 2 house dust mite major allergens can be explained by conserved surface areas representing IgE binding epitopes.


Acta Crystallographica Section D-biological Crystallography | 2001

Structure of ribosomal protein TL5 complexed with RNA provides new insights into the CTC family of stress proteins

Roman Fedorov; V. I. Meshcheryakov; G. M. Gongadze; Natalia P. Fomenkova; Natalia Nevskaya; Maria Selmer; Martin Laurberg; Ole Kristensen; Salam Al-Karadaghi; Anders Liljas; Maria Garber; Stanislav Nikonov

The crystal structure of Thermus thermophilus ribosomal protein TL5 in complex with a fragment of Escherichia coli 5S rRNA has been determined at 2.3 A resolution. The protein consists of two domains. The structure of the N-terminal domain is close to the structure of E. coli ribosomal protein L25, but the C-terminal domain represents a new fold composed of seven beta-strands connected by long loops. TL5 binds to the RNA through its N-terminal domain, whereas the C-terminal domain is not included in this interaction. Cd(2+) ions, the presence of which improved the crystal quality significantly, bind only to the protein component of the complex and stabilize the protein molecule itself and the interactions between the two molecules in the asymmetric unit of the crystal. The TL5 sequence reveals homology to the so-called general stress protein CTC. The hydrophobic cores which stabilize both TL5 domains are highly conserved in CTC proteins. Thus, all CTC proteins may fold with a topology close to that of TL5.


PLOS ONE | 2013

Crystal structures of the human G3BP1 NTF2-like domain visualize FxFG Nup repeat specificity.

Tina Vognsen; Ingvar Rúnar Möller; Ole Kristensen

Ras GTPase Activating Protein SH3 Domain Binding Protein (G3BP) is a potential anti-cancer drug target implicated in several cellular functions. We have used protein crystallography to solve crystal structures of the human G3BP1 NTF2-like domain both alone and in complex with an FxFG Nup repeat peptide. Despite high structural similarity, the FxFG binding site is located between two alpha helices in the G3BP1 NTF2-like domain and not at the dimer interface as observed for nuclear transport factor 2. ITC studies showed specificity towards the FxFG motif but not FG and GLFG motifs. The unliganded form of the G3BP1 NTF2-like domain was solved in two crystal forms to resolutions of 1.6 and 3.3 Å in space groups P212121 and P6322 based on two different constructs, residues 1–139 and 11–139, respectively. Crystal packing of the N-terminal residues against a symmetry related molecule in the P212121 crystal form might indicate a novel ligand binding site that, however, remains to be validated. The crystal structures give insight into the nuclear transportation mechanisms of G3BP and provide a basis for future structure based drug design.


Progress in Biophysics & Molecular Biology | 2000

A decade of progress in understanding the structural basis of protein synthesis

Salam Al-Karadaghi; Ole Kristensen; Anders Liljas

The key reaction of protein synthesis, peptidyl transfer, is catalysed in all living organisms by the ribosome - an advanced and highly efficient molecular machine. During the last decade extensive X-ray crystallographic and NMR studies of the three-dimensional structure of ribosomal proteins, ribosomal RNA components and their complexes with ribosomal proteins, and of several translation factors in different functional states have taken us to a new level of understanding of the mechanism of function of the protein synthesis machinery. Among the new remarkable features revealed by structural studies, is the mimicry of the tRNA molecule by elongation factor G, ribosomal recycling factor and the eukaryotic release factor 1. Several other translation factors, for which three-dimensional structures are not yet known, are also expected to show some form of tRNA mimicry. The efforts of several crystallographic and biochemical groups have resulted in the determination by X-ray crystallography of the structures of the 30S and 50S subunits at moderate resolution, and of the structure of the 70S subunit both by X-ray crystallography and cryo-electron microscopy (EM). In addition, low resolution cryo-EM models of the ribosome with different translation factors and tRNA have been obtained. The new ribosomal models allowed for the first time a clear identification of the functional centres of the ribosome and of the binding sites for tRNA and ribosomal proteins with known three-dimensional structure. The new structural data have opened a way for the design of new experiments aimed at deeper understanding at an atomic level of the dynamics of the system.


Acta Crystallographica Section D-biological Crystallography | 2006

Crystal structures of two peptide-HLA-B*1501 complexes; structural characterization of the HLA-B62 supertype.

Gustav Røder; Thomas Blicher; Sune Justesen; Birthe Johannesen; Ole Kristensen; Jette S. Kastrup; Søren Buus; Michael Gajhede

MHC class I molecules govern human cytotoxic T cell responses. Their specificity determines which peptides they sample from the intracellular protein environment and then present to human cytotoxic T cells. More than 1100 different MHC class I proteins have been found in human populations and it would be a major undertaking to address each of these specificities individually. Based upon their peptide binding specificity, they are currently subdivided into 12 supertypes. Several of these HLA supertypes have not yet been described at the structural level. To support a comprehensive understanding of human immune responses, the structure of at least one member of each supertype should be determined. Here, the structures of two immunogenic peptide-HLA-B*1501 complexes are described. The structure of HLA-B*1501 in complex with a peptide (LEKARGSTY, corresponding to positions 274-282 in the Epstein-Barr virus nuclear antigen-3A) was determined to 2.3 A resolution. The structure of HLA-B*1501 in complex with a peptide (ILGPPGSVY) derived from human ubiquitin-conjugating enzyme-E2 corresponding to positions 91-99 was solved to 1.8 A resolution. Mutual comparisons of these two structures with structures from other HLA supertypes define and explain the specificity of the P2 and P9 peptide anchor preferences in the B62 HLA supertype. The P2 peptide residue binds to the B-pocket in HLA-B*1501. This pocket is relatively large because of the small Ser67 residue located at the bottom. The peptide proximal part of the B-pocket is hydrophobic, which is consistent with P2 anchor residue preference for Leu. The specificity of the B-pocket is determined by the Met45, Ile66 and Ser67 residues. The apex of the B-pocket is hydrophilic because of the Ser67 residue. The P9 peptide residue binds to the F-pocket in HLA-B*1501. The residues most important for the specificity of this pocket are Tyr74, Leu81, Leu95, Tyr123 and Trp147. These residues create a hydrophobic interior in the F-pocket and their spatial arrangement makes the pocket capable of containing large, bulky peptide side chains. Ser116 is located at the bottom of the F-pocket and makes the bottom of this pocket hydrophilic. Ser116, may act as a hydrogen-bonding partner and as such is a perfect place for binding of a Tyr9 peptide residue. Thus, based on structure information it is now possible to explain the peptide sequence specificity of HLA-B*1501 as previously determined by peptide binding and pool sequencing experiments.


Acta Crystallographica Section D-biological Crystallography | 2009

Structure of a fatty-acid-binding protein from Bacillus subtilis determined by sulfur-SAD phasing using in-house chromium radiation

Jie Nan; Yan-Feng Zhou; Cheng Yang; Erik Brostromer; Ole Kristensen; Xiao-Dong Su

Sulfur single-wavelength anomalous dispersion (S-SAD) and halide-soaking methods are increasingly being used for ab initio phasing. With the introduction of in-house Cr X-ray sources, these methods benefit from the enhanced anomalous scattering of S and halide atoms, respectively. Here, these methods were combined to determine the crystal structure of BsDegV, a DegV protein-family member from Bacillus subtilis. The protein was cocrystallized with bromide and low-redundancy data were collected to 2.5 A resolution using Cr Kalpha radiation. 17 heavy-atom sites (ten sulfurs and seven bromides) were located using standard methods. The anomalous scattering of some of the BsDegV S atoms and Br atoms was weak, thus neither sulfurs nor bromides could be used alone for structure determination using the collected data. When all 17 heavy-atom sites were used for SAD phasing, an easily interpretable electron-density map was obtained after density modification. The model of BsDegV was built automatically and a palmitate was found tightly bound in the active site. Sequence alignment and comparisons with other known DegV structures provided further insight into the specificity of fatty-acid selection and recognition within this protein family.


Current Protein & Peptide Science | 2002

Is tRNA binding or tRNA mimicry mandatory for translation factors

Ole Kristensen; Martin Laurberg; Anders Liljas; Maria Selmer

tRNA is the adaptor in the translation process. The ribosome has three sites for tRNA, the A-, P-, and E-sites. The tRNAs bridge between the ribosomal subunits with the decoding site and the mRNA on the small or 30S subunit and the peptidyl transfer site on the large or 50S subunit. The possibility that translation release factors could mimic tRNA has been discussed for a long time, since their function is very similar to that of tRNA. They identify stop codons of the mRNA presented in the decoding site and hydrolyse the nascent peptide from the peptidyl tRNA in the peptidyl transfer site. The structures of eubacterial release factors are not yet known, and the first example of tRNA mimicry was discovered when elongation factor G (EF-G) was found to have a closely similar shape to a complex of elongation factor Tu (EF-Tu) with aminoacyl-tRNA. An even closer imitation of the tRNA shape is seen in ribosome recycling factor (RRF). The number of proteins mimicking tRNA is rapidly increasing. This primarily concerns translation factors. It is now evident that in some sense they are either tRNA mimics, GTPases or possibly both.


Biochemical and Biophysical Research Communications | 2012

Crystal structure of the Rasputin NTF2-like domain from Drosophila melanogaster.

Tina Vognsen; Ole Kristensen

The crystal structure of the NTF2-like domain of the Drosophila homolog of Ras GTPase SH3 Binding Protein (G3BP), Rasputin, was determined at 2.7Å resolution. The overall structure is highly similar to nuclear transport factor 2: It is a homodimer comprised of a β-sheet and three α-helices forming a cone-like shape. However, known binding sites for RanGDP and FxFG containing peptides show electrostatic and steric differences compared to nuclear transport factor 2. A HEPES molecule bound in the structure suggests a new, and possibly physiologically relevant, ligand binding site.

Collaboration


Dive into the Ole Kristensen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elisabeth Bock

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge