Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olena Glushakova is active.

Publication


Featured researches published by Olena Glushakova.


Journal of The American Society of Nephrology | 2007

Diabetic Endothelial Nitric Oxide Synthase Knockout Mice Develop Advanced Diabetic Nephropathy

Takahiko Nakagawa; Waichi Sato; Olena Glushakova; Marcelo Heinig; Tracy Clarke; Martha Campbell-Thompson; Yukio Yuzawa; Mark A. Atkinson; Richard J. Johnson; Byron P. Croker

The pathogenesis of diabetic nephropathy remains poorly defined, and animal models that represent the human disease have been lacking. It was demonstrated recently that the severe endothelial dysfunction that accompanies a diabetic state may cause an uncoupling of the vascular endothelial growth factor (VEGF)-endothelial nitric oxide (eNO) axis, resulting in increased levels of VEGF and excessive endothelial cell proliferation. It was hypothesized further that VEGF-NO uncoupling could be a major contributory mechanism that leads to diabetic vasculopathy. For testing of this hypothesis, diabetes was induced in eNO synthase knockout mice (eNOS KO) and C57BL6 controls. Diabetic eNOS KO mice developed hypertension, albuminuria, and renal insufficiency with arteriolar hyalinosis, mesangial matrix expansion, mesangiolysis with microaneurysms, and Kimmelstiel-Wilson nodules. Glomerular and peritubular capillaries were increased with endothelial proliferation and VEGF expression. Diabetic eNOS KO mice showed increased mortality at 5 mo. All of the functional and histologic changes were improved with insulin therapy. Inhibition of eNO predisposes mice to classic diabetic nephropathy. The mechanism likely is due to VEGF-NO uncoupling with excessive endothelial cell proliferation coupled with altered autoregulation consequent to the development of preglomerular arteriolar disease. Endothelial dysfunction in human diabetes is common, secondary to effects of glucose, advanced glycation end products, C-reactive protein, uric acid, and oxidants. It was postulated that endothelial dysfunction should predict nephropathy and that correction of the dysfunction may prevent these important complications.


Journal of The American Society of Nephrology | 2005

IL-10 Suppresses Chemokines, Inflammation, and Fibrosis in a Model of Chronic Renal Disease

Wei Mu; Xiaosen Ouyang; Anupam Agarwal; Li Zhang; David A. Long; Pedro E. Cruz; Carlos Roncal; Olena Glushakova; Vince A. Chiodo; Mark A. Atkinson; William W. Hauswirth; Terry R. Flotte; Bernardo Rodriguez-Iturbe; Richard J. Johnson

IL-10 is a pluripotent cytokine that plays a pivotal role in the regulation of immune and inflammatory responses. Whereas short-term administration of IL-10 has shown benefit in acute glomerulonephritis, no studies have addressed the potential benefits of IL-10 in chronic renal disease. Chronically elevated blood levels of IL-10 in rats were achieved by administration of a recombinant adeno-associated virus serotype 1 IL-10 (rAAV1-IL-10) vector. Control rats were given a similar dose of rAAV1-GFP. Four weeks after injection, IL-10 levels in serum were measured by ELISA, and chronic renal disease was induced by a 5/6 nephrectomy (n = 6 in each group). Eight weeks later, rats were killed and renal tissue was obtained for RNA, protein, and immunohistochemical analysis. Serum levels of IL-10 were 12-fold greater in the rAAV1-IL-10 group by 4 wk after rAAV1-IL-10 administration (345 +/- 169 versus 28 +/- 15 pg/ml; P = 0.001), and levels were maintained throughout the experiment. rAAV1-IL-10 treatment resulted in less proteinuria (P < 0.05), lower serum creatinine (P < 0.05), and higher creatinine clearances (P < 0.01) compared with rAAV1-GFP-treated rats. Renal interstitial infiltration was significantly attenuated by rAAV1-IL-10 administration as assessed by numbers of CD4+, CD8+, monocyte-macrophages (ED-1+) and dendritic (OX-62+) cells (P < 0.05), and this correlated with reductions in the renal expression of monocyte (renal monocyte chemoattractant protein-1 mRNA and protein) and T cell (RANTES mRNA) chemokines. rAAV1-IL-10 administration decreased mRNA levels of IFN-gamma and IL-2 in the kidney. The reduction in inflammatory cells was associated with a significant reduction in glomerulosclerosis and interstitial fibrosis. It is concluded that IL-10 blocks inflammation and improves renal function in this model of chronic renal disease. The feasibility of long-term overexpression of a gene using the AAV serotype 1 vector system in a model of renal disease is also demonstrated.


Journal of The American Society of Nephrology | 2008

Fructose Induces the Inflammatory Molecule ICAM-1 in Endothelial Cells

Olena Glushakova; Tomoki Kosugi; Carlos Roncal; Wei Mu; Marcelo Heinig; Pietro Cirillo; Laura G. Sánchez-Lozada; Richard J. Johnson; Takahiko Nakagawa

Epidemiologic studies have linked fructose intake with the metabolic syndrome, and it was recently reported that fructose induces an inflammatory response in the rat kidney. Here, we examined whether fructose directly stimulates endothelial inflammatory processes by upregulating the inflammatory molecule intercellular adhesion molecule-1 (ICAM-1). When human aortic endothelial cells were stimulated with physiologic concentrations of fructose, ICAM-1 mRNA and protein expression increased in a time- and dosage-dependent manner, which was independent of NF-kappaB activation. Fructose reduced endothelial nitric oxide (NO) levels and caused a transient reduction in endothelial NO synthase expression. The administration of an NO donor inhibited fructose-induced ICAM-1 expression, whereas blocking NO synthase enhanced it, suggesting that NO inhibits endothelial ICAM-1 expression. Furthermore, fructose resulted in decreased intracellular ATP; administration of exogenous ATP blocked fructose-induced ICAM-1 expression and increased NO levels. Consistent with the in vitro studies, dietary intake of fructose at physiologic dosages increased both serum ICAM-1 concentration and endothelial ICAM-1 expression in the rat kidney. These data suggest that fructose induces inflammatory changes in vascular cells at physiologic concentrations.


PLOS ONE | 2014

Human Traumatic Brain Injury Induces Autoantibody Response against Glial Fibrillary Acidic Protein and Its Breakdown Products

Zhiqun Zhang; J. Susie Zoltewicz; Stefania Mondello; Kimberly J. Newsom; Zhihui Yang; Boxuan Yang; Firas Kobeissy; Joy Guingab; Olena Glushakova; Steven A. Robicsek; Shelley C. Heaton; András Büki; Julia Hannay; Mark S. Gold; Richard Rubenstein; Xi Chun May Lu; Jitendra R. Dave; Kara Schmid; Frank C. Tortella; Claudia S. Robertson; Kevin K. W. Wang

The role of systemic autoimmunity in human traumatic brain injury (TBI) and other forms of brain injuries is recognized but not well understood. In this study, a systematic investigation was performed to identify serum autoantibody responses to brain-specific proteins after TBI in humans. TBI autoantibodies showed predominant immunoreactivity against a cluster of bands from 38–50 kDa on human brain immunoblots, which were identified as GFAP and GFAP breakdown products. GFAP autoantibody levels increased by 7 days after injury, and were of the IgG subtype predominantly. Results from in vitro tests and rat TBI experiments also indicated that calpain was responsible for removing the amino and carboxyl termini of GFAP to yield a 38 kDa fragment. Additionally, TBI autoantibody staining co-localized with GFAP in injured rat brain and in primary rat astrocytes. These results suggest that GFAP breakdown products persist within degenerating astrocytes in the brain. Anti-GFAP autoantibody also can enter living astroglia cells in culture and its presence appears to compromise glial cell health. TBI patients showed an average 3.77 fold increase in anti-GFAP autoantibody levels from early (0–1 days) to late (7–10 days) times post injury. Changes in autoantibody levels were negatively correlated with outcome as measured by GOS-E score at 6 months, suggesting that TBI patients with greater anti-GFAP immune-responses had worse outcomes. Due to the long lasting nature of IgG, a test to detect anti-GFAP autoantibodies is likely to prolong the temporal window for assessment of brain damage in human patients.


Frontiers in Neurology | 2012

Neuro-Glial and Systemic Mechanisms of Pathological Responses in Rat Models of Primary Blast Overpressure Compared to “Composite” Blast

Stanislav I. Svetlov; Victor Prima; Olena Glushakova; Artem Svetlov; Daniel Kirk; Hector Gutierrez; Victor L. Serebruany; Kenneth C. Curley; Kevin K. W. Wang; Ronald L. Hayes

A number of experimental models of blast brain injury have been implemented in rodents and larger animals. However, the variety of blast sources and the complexity of blast wave biophysics have made data on injury mechanisms and biomarkers difficult to analyze and compare. Recently, we showed the importance of rat position toward blast generated by an external shock tube. In this study, we further characterized blast producing moderate traumatic brain injury and defined “composite” blast and primary blast exposure set-ups. Schlieren optics visualized interaction between the head and a shock wave generated by external shock tube, revealing strong head acceleration upon positioning the rat on-axis with the shock tube (composite blast), but negligible skull movement upon peak overpressure exposure off-axis (primary blast). Brain injury signatures of a primary blast hitting the frontal head were assessed and compared to damage produced by composite blast. Low to negligible levels of neurodegeneration were found following primary blast compared to composite blast by silver staining. However, persistent gliosis in hippocampus and accumulation of GFAP/CNPase in circulation was detected after both primary and composite blast. Also, markers of vascular/endothelial inflammation integrin alpha/beta, soluble intercellular adhesion molecule-1, and L-selectin along with neurotrophic factor nerve growth factor-beta were increased in serum within 6 h post-blasts and persisted for 7 days thereafter. In contrast, systemic IL-1, IL-10, fractalkine, neuroendocrine peptide Orexin A, and VEGF receptor Neuropilin-2 (NRP-2) were raised predominantly after primary blast exposure. In conclusion, biomarkers of major pathological pathways were elevated at all blast set-ups. The most significant and persistent changes in neuro-glial markers were found after composite blast, while primary blast instigated prominent systemic cytokine/chemokine, Orexin A, and Neuropilin-2 release, particularly when primary blast impacted rats with unprotected body.


Journal of The American Society of Nephrology | 2006

Uncoupling of Vascular Endothelial Growth Factor with Nitric Oxide as a Mechanism for Diabetic Vasculopathy

Takahiko Nakagawa; Waichi Sato; Yuri Y. Sautin; Olena Glushakova; Byron P. Croker; Mark A. Atkinson; C. Craig Tisher; Richard J. Johnson

The role of VEGF in vascular disease is complicated. Vascular endothelial growth factor (VEGF) expression can be deleterious in diabetic vasculopathy, especially in kidney and retina. In contrast, VEGF seems to be renoprotective in nondiabetic renal disease. VEGF exerts it biologic effects in association with nitric oxide (NO), yet it is known that NO bioavailability is reduced in diabetes. Thus, it was hypothesized that this diverse biologic effect of VEGF on diabetic vasculopathy is due to uncoupling of VEGF with NO. VEGF stimulated NO production in a dose-dependent manner in bovine aortic endothelial cells (BAEC), and this was inhibited by either high glucose or Nomega-nitro-l-arginine methyl ester (L-NAME) treatment. Endothelial NO synthase phosphorylation by VEGF was also inhibited by high glucose. It is interesting that both high glucose and L-NAME enhanced the proliferative response of endothelial cells, which was prevented by an NO donor. Furthermore, high glucose as well as L-NAME stimulated VEGF and kinase-insert domain receptor (KDR) (VEGF receptor 2) mRNA expression in BAEC. These data suggest that the uncoupling of VEGF with NO enhances endothelial cell proliferation via the KDR pathway. Compatible with these findings, a KDR antagonist blocked this response. In addition, a VEGF mutant, which binds only KDR, induced extracellular signal-regulated kinase (ERK) activation, and inhibition of ERK completely blocked endothelial cell proliferation under this condition, suggesting a role of the KDR-ERK1/2 pathway on endothelial cell proliferation. In conclusion, high glucose causes an uncoupling of VEGF with NO, which enhances endothelial cell proliferation via activation of the KDR-ERK1/2 pathway. These results may provide new insights into the understanding of the mechanism of diabetic vascular disease.


Journal of The American Society of Nephrology | 2008

Hypokalemic Nephropathy is Associated with Impaired Angiogenesis

Sirirat Reungjui; Carlos Roncal; Waichi Sato; Olena Glushakova; Byron P. Croker; Shinichi Suga; Xiaosen Ouyang; Kriang Tungsanga; Takahiko Nakagawa; Richard J. Johnson; Wei Mu

Hypokalemic nephropathy is associated with alterations in intrarenal vasoactive substances, leading to vasoconstriction, salt-sensitivity, and progression of interstitial fibrosis. In this study, we investigated whether hypokalemic nephropathy might also involve impaired renal angiogenesis. Sprague-Dawley rats that were fed low-potassium diets developed peritubular capillary loss that began in the inner stripe of the outer medulla (week 2) and progressed to the outer stripe of the outer medulla (week 4) and cortex (week 12). These changes were associated with increased macrophage infiltration, increased expression of both monocyte chemoattractant protein-1 and TNF-alpha, and a loss of vascular endothelial growth factor and endothelial nitric oxide synthase. Renal thiobarbituric acid-reactive substances, markers of oxidative stress, were increased late in disease. In conclusion, hypokalemic nephropathy is associated with impaired renal angiogenesis, evidenced by progressive capillary loss, reduced endothelial cell proliferation, and loss of VEGF expression.


Journal of The American Society of Nephrology | 2003

Gene Delivery in Renal Tubular Epithelial Cells Using Recombinant Adeno-Associated Viral Vectors

Sifeng Chen; Anupam Agarwal; Olena Glushakova; Marda S. Jorgensen; Shashikumar K. Salgar; Amy Poirier; Terence R. Flotte; Byron P. Croker; Kirsten M. Madsen; Mark A. Atkinson; William W. Hauswirth; Kenneth I. Berns; C. Craig Tisher

Gene therapy has the potential to provide a therapeutic strategy for numerous renal diseases such as diabetic nephropathy, chronic rejection, Alport syndrome, polycystic kidney disease, and inherited tubular disorders. In previous studies using cationic liposomes or adenoviral or retroviral vectors to deliver genes into the kidney, transgene expression has been transient and often associated with adverse host immune responses, particularly with the use of adenoviral vectors. The unique properties of recombinant adeno-associated viral (rAAV) vectors permit long-term stable transgene expression with a relatively low host immune response. The purpose of the present study was to evaluate gene expression in the rat kidney after intrarenal arterial infusion of a rAAV (serotype 2) vector encoding green fluorescence protein (GFP) induced by a cytomegalovirus-chicken beta-actin hybrid promoter. The left kidney of experimental animals was treated with either saline or transduced with rAAV2-GFP (0.125 ml/100 g body wt, 1 x 10(10)/ml infectious units) through the renal artery. A time-dependent expression of GFP was observed in all kidneys injected with rAAV2-GFP, with maximal expression observed at 6 wk posttransduction. The expression of GFP was restricted to cells in the S(3) segment of the proximal tubule and intercalated cells in the collecting duct, the latter identified by co-localization with H(+)-ATPase. No transduction was observed in the glomeruli or the intrarenal vasculature. These studies demonstrate successful transgene expression in tubular epithelial cells, specifically in the S(3) segment of the proximal tubule and intercalated cells, after intrarenal administration of a rAAV vector and provide the impetus for further studies to exploit its use as a tool for gene therapy in the kidney.


Journal of The American Society of Nephrology | 2005

Role of ERK1/2 and p38 Mitogen-Activated Protein Kinases in the Regulation of Thrombospondin-1 by TGF-β1 in Rat Proximal Tubular Cells and Mouse Fibroblasts

Takahiko Nakagawa; Hui Y. Lan; Olena Glushakova; Hong J. Zhu; Duk-Hee Kang; George F. Schreiner; Erwin P. Bottinger; Richard J. Johnson; Yuri Y. Sautin

Thrombospondin-1 (TSP-1) inhibits angiogenesis and activates latent TGF-beta1, both of which are strongly associated with progression of renal disease. Recently, it was reported that Smad2 but not Smad3 regulates TSP-1 expression in response to TGF-beta1 in rat tubular epithelial cells as well as in mouse fibroblasts. This study investigated the role of ERK1/2 and p38 mitogen-activated protein kinases (MAPK). TGF-beta1 activated both ERK1/2 and p38 in the rat proximal tubular cell line NRK52E. Blocking ERK1/2 and p38 inhibited TGF-beta1-induced TSP-1 mRNA and protein expression. Next, the cross-talk between Smad2 and ERK1/2 or p38 was examined. Whereas blocking of ERK1/2 or p38 failed to inhibit TGF-beta1-induced Smad2 activation, inhibition of Smad2 by Smad7 overexpression inhibited the phosphorylation of ERK1/2 but not p38 in response to TGF-beta1. Similar results were observed using mouse fibroblasts from Smad2 knockout embryos, in that TGF-beta1 was able to activate p38 but not ERK1/2 in this cell line. In conclusion, TSP-1 expression is regulated by both ERK1/2 and p38 MAPK in rat proximal tubular cells and mouse fibroblasts in response to TGF-beta1. The ERK1/2 activation is dependent on Smad2 activation, whereas the p38 activation occurs independent of Smad2. Because TSP-1 is a major antiangiogenic molecule and an activator of TGF-beta1, this provides an important insight to the mechanism by which TGF-beta1 may mediate interstitial fibrosis and progressive renal disease.


Toxicological Sciences | 2012

Cerebrospinal Fluid Protein Biomarker Panel for Assessment of Neurotoxicity Induced by Kainic Acid in Rats

Olena Glushakova; Andreas Jeromin; Juan Martinez; Danny Johnson; Nancy D. Denslow; Jackson Streeter; Ronald L. Hayes; Stefania Mondello

Glutamate excitotoxicity plays a key role in the etiology of a variety of neurological, psychiatric, and neurodegenerative disorders. The goal of this study was to investigate spatiotemporal distribution in the brain and cerebrospinal fluid (CSF) concentrations of ubiquitin C-terminal hydrolase-1 (UCH-L1), glial fibrillary acidic protein (GFAP), αII-spectrin breakdown products (SBDP150, SBDP145, and SBDP120), and their relationship to neuropathology in an animal model of kainic acid (KA) excitotoxicity. Triple fluorescent labeling and Fluoro-Jade C staining revealed a reactive gliosis in brain and specific localization of degenerating neurons in hippocampus and entorhinal cortex of KA-treated rats. Immunohistochemistry showed upregulation of GFAP expression in hippocampus and cortex beginning 24h post KA injection and peaking at 48h. At these time points concurrent with extensive neurodegeneration all SBDPs were observed throughout the brain. At 24h post KA injection, a loss of structural integrity was observed in cellular distribution of UCH-L1 that correlated with an increase in immunopositive material in the extracellular matrix. CSF levels of UCH-L1, GFAP, and SBDPs were significantly increased in KA-treated animals compared with controls. The temporal increase in CSF biomarkers correlated with brain tissue distribution and neurodegeneration. This study provided evidence supporting the use of CSF levels of glial and neuronal protein biomarkers to assess neurotoxic damage in preclinical animal models that could prove potentially translational to the clinic. The molecular nature of these biomarkers can provide critical information on the underlying mechanisms of neurotoxicity that might facilitate the development of novel drugs and allow physicians to monitor drug safety.

Collaboration


Dive into the Olena Glushakova's collaboration.

Top Co-Authors

Avatar

Ronald L. Hayes

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Firas Kobeissy

American University of Beirut

View shared research outputs
Top Co-Authors

Avatar

Alex B. Valadka

Virginia Commonwealth University

View shared research outputs
Researchain Logo
Decentralizing Knowledge