Olga A. Podosokorskaya
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Olga A. Podosokorskaya.
Environmental Microbiology | 2013
Olga A. Podosokorskaya; Vitaly V. Kadnikov; Sergey Gavrilov; Andrey V. Mardanov; Alexander Y. Merkel; Olga V. Karnachuk; N. V. Ravin; Elizaveta A. Bonch-Osmolovskaya; Ilya V. Kublanov
A novel moderately thermophilic, facultatively anaerobic chemoorganotrophic bacterium strain P3M-2(T) was isolated from a microbial mat developing on the wooden surface of a chute under the flow of hot water (46°C) coming out of a 2775-m-deep oil exploration well (Tomsk region, Russia). Strain P3M-2(T) is a moderate thermophile and facultative anaerobe growing on mono-, di- or polysaccharides by aerobic respiration, fermentation or by reducing diverse electron acceptors [nitrite, Fe(III), As(V)]. Its closest cultivated relative (90.8% rRNA gene sequence identity) is Ignavibacterium album, the only chemoorganotrophic member of the phylum Chlorobi. New genus and species Melioribacter roseus are proposed for isolate P3M-2(T) . Together with I. album, the new organism represents the class Ignavibacteria assigned to the phylum Chlorobi. The revealed group includes a variety of uncultured environmental clones, the 16S rRNA gene sequences of some of which have been previously attributed to the candidate division ZB1. Phylogenetic analysis of M. roseus and I. album based on their 23S rRNA and RecA sequences confirmed that these two organisms could represent an even deeper, phylum-level lineage. Hence, we propose a new phylum Ignavibacteriae within the Bacteroidetes-Chlorobi group with a sole class Ignavibacteria, two families Ignavibacteriaceae and Melioribacteraceae and two species I. album and M. roseus. This proposal correlates with chemotaxonomic data and phenotypic differences of both organisms from other cultured representatives of Chlorobi. The most essential differences, supported by the analyses of complete genomes of both organisms, are motility, facultatively anaerobic and obligately organotrophic mode of life, the absence of chlorosomes and the apparent inability to grow phototrophically.
International Journal of Systematic and Evolutionary Microbiology | 2013
Olga A. Podosokorskaya; Elizaveta A. Bonch-Osmolovskaya; A. A. Novikov; T. V. Kolganova; Ilya V. Kublanov
A novel obligately anaerobic, mesophilic, organotrophic bacterium, strain P3M-1(T), was isolated from a microbial mat formed in a wooden bath filled with hot water emerging from a 2775 m-deep well in the Tomsk region of western Siberia, Russia. Cells of strain P3M-1(T) were rod-shaped, 0.3-0.7 µm in width and formed multicellullar filaments that reached up to 400 µm in length. Strain P3M-1(T) grew optimally at 42-45 °C, pH 7.5-8.0, and with 0.1% (w/v) NaCl. Under optimal conditions, the doubling time was 6 h. The isolate was able to ferment a variety of proteinaceous substrates and sugars, including microcrystalline cellulose. Acetate, ethanol and H(2) were the main products of glucose fermentation. The genomic DNA G+C content was 55 mol%. 16S rRNA gene sequence-based phylogenetic analyses showed that strain P3M-1(T) was a member of the class Anaerolinea, with 92.8 % sequence similarity to Levilinea saccharolytica KIBI-1(T). Based on phylogenetic analysis and physiological properties, strain P3M-1(T) represents a novel species in a new genus, for which the name Ornatilinea apprima gen. nov., sp. nov. is proposed; the type strain of O. apprima is P3M-1(T) (= DSM 23815(T)=VKM B-2669(T)).
PLOS ONE | 2013
Vitaly V. Kadnikov; Andrey V. Mardanov; Olga A. Podosokorskaya; Sergey Gavrilov; Ilya V. Kublanov; Alexey V. Beletsky; Elizaveta A. Bonch-Osmolovskaya; Nikolai V. Ravin
Melioribacter roseus is a moderately thermophilic facultatively anaerobic organotrophic bacterium representing a novel deep branch within Bacteriodetes/Chlorobi group. To better understand the metabolic capabilities and possible ecological functions of M. roseus and get insights into the evolutionary history of this bacterial lineage, we sequenced the genome of the type strain P3M-2T. A total of 2838 open reading frames was predicted from its 3.30 Mb genome. The whole proteome analysis supported phylum-level classification of M. roseus since most of the predicted proteins had closest matches in Bacteriodetes, Proteobacteria, Chlorobi, Firmicutes and deeply-branching bacterium Caldithrix abyssi, rather than in one particular phylum. Consistent with the ability of the bacterium to grow on complex carbohydrates, the genome analysis revealed more than one hundred glycoside hydrolases, glycoside transferases, polysaccharide lyases and carbohydrate esterases. The reconstructed central metabolism revealed pathways enabling the fermentation of complex organic substrates, as well as their complete oxidation through aerobic and anaerobic respiration. Genes encoding the photosynthetic and nitrogen-fixation machinery of green sulfur bacteria, as well as key enzymes of autotrophic carbon fixation pathways, were not identified. The M. roseus genome supports its affiliation to a novel phylum Ignavibateriae, representing the first step on the evolutionary pathway from heterotrophic ancestors of Bacteriodetes/Chlorobi group towards anaerobic photoautotrophic Chlorobi.
International Journal of Systematic and Evolutionary Microbiology | 2011
Olga A. Podosokorskaya; T. V. Kolganova; Nikolai A. Chernyh; Margarita L. Miroshnichenko; Elizaveta A. Bonch-Osmolovskaya; Ilya V. Kublanov
A novel obligately anaerobic, extremely thermophilic, organotrophic bacterium, strain 1445t(T), was isolated from a hot spring on Kunashir Island (Kuril Islands, Russia). Cells were motile rods (0.4-0.5 × 1.0-3.0 µm). The temperature range for growth at pH 7.8 was 46-80 °C, with optimum growth at 65 °C. The pH range for growth at 65 °C was pH 5.7-9.0, with optimum growth at pH 7.8. Growth was not observed at or below 40 °C, at or above 84 °C, at or below pH 5.4 or at or above pH 9.5. The isolate degraded a wide range of substrates including starch, cellulose and cellulose derivatives. Elemental sulfur stimulated growth, but sodium sulfate, sulfite and thiosulfate did not. DNA G+C content was 31 mol%. Phylogenetic analysis of 16S rRNA gene sequences showed that strain 1445t(T) belonged to the genus Fervidobacterium. 16S rRNA gene sequence similarities with strains of other species of the genus Fervidobacterium were 94.9-98.3 %; the type strain of Fervidobacterium gondwanense was the closest relative of strain 1445t(T). DNA-DNA hybridization of strain 1445t(T) and F. gondwanense AB39(T) revealed a relatedness value of 20 %. Based on phylogenetic data and physiological properties of the isolate, a novel species, designated Fervidobacterium riparium sp. nov., is proposed with strain 1445t(T) ( = DSM 21630(T) = VKM B-2549(T)) as the type strain.
International Journal of Systematic and Evolutionary Microbiology | 2014
Olga A. Podosokorskaya; Elizaveta A. Bonch-Osmolovskaya; Beskorovaynyy Av; Stepan V. Toshchakov; T. V. Kolganova; Kublanov
A novel strictly anaerobic, halotolerant, organotrophic bacterium, strain P3M-3(T), was isolated from a microbial mat formed under the flow of hot water emerging from a 2775 m-deep well in Tomsk region (western Siberia, Russia). Cells of strain P3M-3(T) were straight and curved rods, 0.2-0.4 µm in width and 1.5-20 µm in length. Strain P3M-3(T) grew optimally at 37 °C, pH 7.0-7.5 and in a NaCl concentration of 15 g l(-1). Under optimum growth conditions, the doubling time was 1 h. The isolate was able to ferment a variety of mono-, di- and polysaccharides, including microcrystalline cellulose. Acetate, ethanol, H2 and CO2 were the main products of glucose fermentation. The DNA G+C content was 33.4 mol%. 16S rRNA gene-based phylogenetic analysis showed that strain P3M-3(T) was a member of family Lachnospiraceae, whose representatives are also found in Clostridium cluster XIVa. 16S rRNA gene sequence similarity with Clostridium jejuense HY-35-12(T), the closest relative, was 93.9%. A novel genus and species, Mobilitalea sibirica gen. nov., sp. nov., are proposed based on phylogenetic analysis and physiological properties of the novel isolate. The type strain of the type species is P3M-3(T) ( = DSM 26468(T) = VKM B-2804(T)).
International Journal of Systematic and Evolutionary Microbiology | 2011
Olga A. Podosokorskaya; Ilya V. Kublanov; T. V. Kolganova; Elizaveta A. Bonch-Osmolovskaya
A novel obligately anaerobic, extremely thermophilic, organotrophic bacterium, strain ik275mar(T), was isolated from a Mid-Atlantic Ridge deep-sea hydrothermal vent. Cells were rods surrounded by a sheath-like structure (toga), 0.4-0.9 µm in width and 1.2-6.0 µm in length. Strain ik275mar(T) grew at 37-75 °C, pH 5.6-8.2 and at NaCl concentrations of 10-55 g l(-1). Under optimum conditions (70 °C, pH 6.6, NaCl 20 g l(-1)), doubling time was 32 min. The isolate was able to ferment carbohydrates including starch, cellulose and cellulose derivatives. Acetate, H(2) and CO(2) were the main products of glucose fermentation. G+C content of DNA was 27 mol%. Phylogenetic analysis of 16S rRNA gene sequences showed that strain ik275mar(T) is a member of the genus Thermosipho. 16S rRNA gene sequence identity with the other species of the genus Thermosipho ranged from 93.7 to 94.5 %. Based on the phylogenetic analysis and physiological properties of the novel isolate, we propose a novel species, Thermosipho affectus sp. nov., with type strain ik275mar(T) ( = DSM 23112(T) = VKM B-2574(T)).
Frontiers in Microbiology | 2016
Yulia A. Frank; Vitaly V. Kadnikov; Sergey Gavrilov; David Banks; Anna L. Gerasimchuk; Olga A. Podosokorskaya; Alexander Y. Merkel; Nikolai A. Chernyh; Andrey V. Mardanov; Nikolai V. Ravin; Olga V. Karnachuk; Elizaveta A. Bonch-Osmolovskaya
The goal of this work was to study the diversity of microorganisms inhabiting a deep subsurface aquifer system in order to understand their functional roles and interspecies relations formed in the course of buried organic matter degradation. A microbial community of a deep subsurface thermal aquifer in the Tomsk Region, Western Siberia was monitored over the course of 5 years via a 2.7 km deep borehole 3P, drilled down to a Palaeozoic basement. The borehole water discharges with a temperature of ca. 50°C. Its chemical composition varies, but it steadily contains acetate, propionate, and traces of hydrocarbons and gives rise to microbial mats along the surface flow. Community analysis by PCR-DGGE 16S rRNA genes profiling, repeatedly performed within 5 years, revealed several dominating phylotypes consistently found in the borehole water, and highly variable diversity of prokaryotes, brought to the surface with the borehole outflow. The major planktonic components of the microbial community were Desulfovirgula thermocuniculi and Methanothermobacter spp. The composition of the minor part of the community was unstable, and molecular analysis did not reveal any regularity in its variations, except some predominance of uncultured Firmicutes. Batch cultures with complex organic substrates inoculated with water samples were set in order to enrich prokaryotes from the variable part of the community. PCR-DGGE analysis of these enrichments yielded uncultured Firmicutes, Chloroflexi, and Ignavibacteriae. A continuous-flow microaerophilic enrichment culture with a water sample amended with acetate contained Hydrogenophilus thermoluteolus, which was previously detected in the microbial mat developing at the outflow of the borehole. Cultivation results allowed us to assume that variable components of the 3P well community are hydrolytic organotrophs, degrading buried biopolymers, while the constant planktonic components of the community degrade dissolved fermentation products to methane and CO2, possibly via interspecies hydrogen transfer. Occasional washout of minor community components capable of oxygen respiration leads to the development of microbial mats at the outflow of the borehole where residual dissolved fermentation products are aerobically oxidized. Long-term community analysis with the combination of molecular and cultivation techniques allowed us to characterize stable and variable parts of the community and propose their environmental roles.
Microbiology | 2015
Alexander Y. Merkel; Olga A. Podosokorskaya; N. A. Chernyh; Elizaveta A. Bonch-Osmolovskaya
Detection and analysis of the mcrA gene encoding methyl-coenzyme M reductase, the key enzyme of methanogenesis, was used to assess occurrence and diversity of methanogenic archaea in terrestrial hot springs of Kamchatka and Sa~o Miguel Island (the Azores). For this analysis, phylogeny of methanogens was initially reconstructed based on available sequences of the mcrA gene, which is a common functional and phylogenetic marker for this physiological group of prokaryotes. Methanogens were revealed in most of the studied terrestrial hot springs with temperatures from 51 to 89°C, although they constituted an insignificant portion of the microbial population. The mcrA gene sequences revealed in the samples belonged to members of the genera Methanothermobacter, Methanothermus, and Methanothrix, previously detected in hot springs, as well as to methanogens not found earlier in these environments. The latter belonged to Methanomassiliicoccales, Methanocellales, and Methanomethylovorans, as well as to MCR-2a, the new deep phylogenetic cluster of uncultured methanogenic archaea; its phylotypes were present in all springs where the mcrA gene was detected. Our results indicate high diversity of the thermophilic methanogens inhabiting terrestrial hot springs and the presence among them of new groups with yet unknown substrate specificity.
Genome Announcements | 2013
Irina Nikolaevna Dominova; Ilya V. Kublanov; Olga A. Podosokorskaya; K. S. Derbikova; M.V. Patrushev; Stepan V. Toshchakov
ABSTRACT The complete genomic sequence of a novel hyperthermophilic crenarchaeon, strain 1910bT, was determined. The genome comprises a 1,750,259-bp circular chromosome containing single copies of 3 rRNA genes, 43 tRNA genes, and 1,896 protein-coding sequences. In silico genome-genome hybridization suggests the proposal of a novel species, “Thermofilum adornatus” strain 1910bT.
Microbiology | 2016
Alexander Y. Merkel; Olga A. Podosokorskaya; Tatyana G. Sokolova; Elizaveta A. Bonch-Osmolovskaya
Archaeal diversity in the 2012 terrestrial hot spring (Valley of Geysers, Kronotsky Nature Reserve, Kamchatka, Russia) was investigated using molecular and cultivation-based approaches. Analysis of the 16S rRNA gene sequences revealed predominance among archaea of uncultured microorganisms of the pSL12 and THSCG clusters. Analysis of the mcrA genes revealed that members of the order Methanomassiliicoccales were predominant (68%) among methanogens; the latter constituted 0.15% of the total number of archaea. Five stable thermophilic methanogenic associations utilizing hydrogen, formate, acetate, or methanol as substrates were obtained from the sediments of spring 2012. The diversity of cultured methanogens was limited to members of the genera Methanothermobacter, Methanothrix, and Methanomethylovorans. The association growing at 65°C and producing methane from methanol contained two components, which probably formed a syntrophic relationship: a Methanothermobacter methanogenic archaeon and a bacterium representing an separate cluster within the Firmicutes phylum, which was phylogenetically related to the genera Thermacetogenium and Syntrophaceticus. These data indicate high diversity of methanogens, notwithstanding their low abundance among archaea. The group of thermophilic Methanomassiliicoccales, which predominated among methanogens, is of special interest.