Olga Mamaeva
University of Alabama at Birmingham
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Olga Mamaeva.
Journal of Cellular Biochemistry | 2009
Olga Mamaeva; Junghyun Kim; Gong Feng; Jay M. McDonald
Notch signaling is associated with prostate osteoblastic bone metastases and calcium/calmodulin‐dependent kinase II (CaMKII) is associated with osteoblastogenesis of human mesenchymal stem cells. Here we show that prostate cancer cell lines C4‐2B and PC3, both derived from bone metastases and express Notch‐1, have all four isoforms of CaMKII (α, β, γ, δ). In contrast, prostate cancer cell lines LNcaP and DU145, which are not derived from bone metastases and lack the Notch‐1 receptor, both lack the alpha isoform of CaMKII. In addition, DU145 cells also lack the β‐isoform. In C4‐2B cells, inhibition of CaMKII by KN93 or γ‐secretase by L‐685,458 inhibited the formation of the cleaved form of Notch‐1 thus inhibiting Notch signaling. KN93 inhibited down stream Notch‐1 signaling including Hes‐1 gene expression, Hes‐1 promoter activity, and c‐Myc expression. In addition, both KN93 and L‐685,458 inhibited proliferation and Matrigel invasion by C4‐2B cells. The activity of γ‐secretase was unaffected by KN93 but markedly inhibited by L‐685,458. Inhibition of the expression of α, β, or γ‐isoform by siRNA did not affect Hes‐1 gene expression, however when expression of one isoform was inhibited by siRNA, there were compensatory changes in the expression of the other isoforms. Over‐expression of CaMKII‐α increased Hes‐1 expression, consistent with Notch‐1 signaling being at least partially dependent upon CaMKII. This unique crosstalk between CaMKII and Notch‐1 pathways provides new insight into Notch signaling and potentially provides new targets for pharmacotherapeutics. J. Cell. Biochem. 106: 25–32, 2009.
Human Gene Therapy | 2011
Michael J. Passineau; Timothy Fahrenholz; Laurie Machen; Lee Zourelias; Katherine Nega; Rachel Paul; Mary MacDougall; Olga Mamaeva; Richard Steet; Jarrod Barnes; H.M. Kingston; Raymond L. Benza
Fabry disease is caused by an X-linked deficiency of the lysosomal enzyme α-galactosidase A (GLA) and has been treated successfully with enzyme replacement therapy (ERT). Gene therapy has been proposed as an alternative to ERT due to the presumed advantages of continuous, endogenous production of the therapeutic enzyme. GLA production in the liver and its therapeutic efficacy in the Fabry mouse have been demonstrated previously with various viral vector systems. In consideration of the potential advantages of using the salivary glands as endogenous GLA biosynthesis sites, we explored the feasibility of this approach in the Fabry mouse. GLA -/0 or -/- mice received an adenoviral vector (2 × 10(10) or 1 × 10(9) viral particles) expressing GLA to the right submandibular gland via oral cannulation of the submandibular duct. Four days later, animals were sacrificed; saliva, plasma, kidney, liver, and brain were collected and assayed using ELISA, Western blot, and a GLA enzymatic activity assay using both traditional fluorescence methods and isotope dilution mass spectrometry by following the U.S. EPA Method 6800. GLA activity was significantly elevated in the serum and liver of both treatment groups, and improvement in the kidney was marginally significant (P < 0.069) in the high-dose group. Notably, we found that liver and salivary gland produce different glycoforms of the GLA transgene. Only small numbers of adenoviral genomes were observed in the livers of treated animals, but in four of 14 in the high-dose groups, liver levels of adenovirus exceeded 20 copies/μg, indicating that the sequestration in the salivary gland was imperfect at high doses. Taken together, these results indicate that the salivary gland-based gene therapy for Fabry disease is promising, and further studies with advanced viral vector gene delivery systems (e.g., adeno-associated virus) for long-term treatment appear to be warranted.
Cells Tissues Organs | 2011
Changchun Ren; M. G. Diniz; C. Piazza; Hope M. Amm; D. L. Rollins; Helen Rivera; Patricia DeVilliers; D. P. Kestler; Peter D. Waite; Olga Mamaeva; Mary MacDougall
Odontogenic tumors occur within the jaw bones and may be derived from odontogenic epithelium or ectomesenchyme or contain active components of both tissue types. We investigated the gene expression profile of enamel matrix proteins (EMPs), genes related to osteogenesis, and the mineralization process in odontogenic tumor cell populations focusing on an ameloblastoma (AB-1), a keratocystic odontogenic tumor (KCOT-1), and a calcifying epithelial odontogenic tumor (CEOT-1). All cell populations were shown to be epithelial in origin by CK14 expression. All tested EMPs were expressed by all odontogenic tumor cell types, with higher transcript levels seen in the AB-1 population especially for AMEL, AMBN, and ODAM. CEOT-1 cell populations showed a greater content of ALP-positive cells as well as higher ALP mRNA levels. Using qRT-PCR, we found a higher expression of 8 genes in the CEOT-1 compared to the AB-1 and KCOT-1. In this study we demonstrated the establishment of AB-1, KCOT-1 and CEOT-1 cell populations. The unique gene expression profiles of AB-1, KCOT-1, and CEOT-1 cells and their interactions with the surrounding microenvironment may support their unique tumor development, progression, and survival.
Cells Tissues Organs | 2016
Changming Lu; Samuel Huguley; Chun Cui; Lauren B. Cabaniss; Peter D. Waite; David M. Sarver; Olga Mamaeva; Mary MacDougall
The Apert syndrome is a rare congenital disorder most often arising from S252W or P253R mutations in fibroblast growth factor receptor (FGFR2). Numerous studies have focused on the regulatory role of Apert FGFR2 signaling in bone formation, whereas its functional role in tooth development is largely unknown. To investigate the role of FGFR signaling in cell proliferation and odontogenic differentiation of human dental cells in vitro, we isolated dental pulp and enamel organ epithelia (EOE) tissues from an Apert patient carrying the S252W FGFR2 mutation. Apert primary pulp and EOE cells were established and shown to exhibit normal morphology and express alkaline phosphatase under differentiation conditions. Similar to control cells, Apert dental pulp and EOE cells expressed all FGFRs, with highest levels of FGFR1 followed by FGFR2 and low levels of FGFR3 and FGFR4. However, Apert cells had increased cell growth compared with control cells. Distinct from previous findings in osteoblast cells, gain-of-function S252W FGFR2 mutation did not upregulate the expression of epidermal growth factor receptor (EGFR) and platelet-derived growth factor receptor (PDGFRα), but elevated extracellular signal-regulated kinase (ERK) signaling in cells after EGF stimulation. Unexpectedly, there was little effect of the S252W mutation on odontogenic gene expression in dental pulp and EOE cells. However, after inhibition of total FGFR signaling or ERK signaling, the expression of odontogenic genes was upregulated in both dental cell types, indicating the negative effect of whole FGFR signaling on odontogenic differentiation. This study provides novel insights on FGFR signaling and a common Apert FGFR2 mutation in the regulation of odontogenic differentiation of dental mesenchymal and epithelial cells.
Journal of Histochemistry and Cytochemistry | 2012
Heidi Erlandsen; Jennifer E. Ames; Amena Tamkenath; Olga Mamaeva; Katherine Stidham; Mary Elizabeth Wilson; Pablo Perez-Pinera; Thomas F. Deuel; Mary MacDougall
Pleiotrophin (PTN) is an extracellular matrix–associated growth factor and chemokine expressed in mesodermal and ectodermal cells. It plays an important role in osteoblast recruitment and differentiation. There is limited information currently available about PTN expression during odontoblast differentiation and tooth formation, and thus the authors aimed to establish the spatiotemporal expression pattern of PTN during mouse odontogenesis. Immortalized mouse dental pulp (MD10-D3, MD10-A11) and odontoblast-like (M06-G3) and ameloblast-like (EOE-3M) cell lines were grown and samples prepared for immunocytochemistry, Western blot, and conventional and quantitative PCR analysis. Effects of BMP2, BMP4, and BMP7 treatment on PTN expression in odontoblast-like M06-G3 cells were tested by quantitative PCR. Finally, immunohistochemistry of sectioned mice mandibles and maxillaries at developmental stages E16, E18, P1, P6, P10, and P28 was performed. The experiments showed that PTN, at both the mRNA and protein level, was expressed in all tested epithelial and mesenchymal dental cell lines and that the level of PTN mRNA was influenced differentially by the bone morphogenetic proteins. The authors observed initial expression of PTN in the inner enamel epithelium with prolonged expression in the ameloblasts and odontoblasts throughout their stages of maturation and strong expression in the terminally differentiated and enamel matrix–secreting ameloblasts and odontoblasts of the adult mouse incisors and molars.
Connective Tissue Research | 2014
Changming Lu; Olga Mamaeva; Chun Cui; Hope M. Amm; Frank Rutsch; Mary MacDougall
Abstract Singleton-Merten syndrome (SMS) is a rare disease with a phenotype of dental dysplasia. Currently, the underlying mechanism of this disease is unknown. In order to investigate the functional mechanism of the SMS tooth phenotypes, we isolated dental pulp tissue and established SMS primary pulp cells. These cells exhibited normal morphology and could be maintained in culture. Their ability to express alkaline phosphatase and mineralize was confirmed by in vitro staining. A comparative osteogenesis polymerase chain reaction array analysis was performed revealing 22 genes up-regulated and 8 genes down-regulated greater than 2-fold in SMS versus unaffected pulp cells. Down-regulated genes included ALP, IGF2, TGFBR2 and COL1A1. Collagen type I was reduced in SMS cells as shown by Western blot analysis. Furthermore, matrix metallopeptidase 13 was found to be dramatically increased in SMS pulp cells. Our findings suggest that dentin mineralization is dysregulated in SMS and may contribute to the root phenotype found in this disease.
PLOS ONE | 2011
Anton V. Borovjagin; Juan E Dong; Michael J. Passineau; Changchun Ren; Ejvis Lamani; Olga Mamaeva; Hongju Wu; Enid Keyser; Miho Murakami; Shuo Chen; Mary MacDougall
To explore gene therapy strategies for amelogenesis imperfecta (AI), a human ameloblast-like cell population was established from third molars of an AI-affected patient. These cells were characterized by expression of cytokeratin 14, major enamel proteins and alkaline phosphatase staining. Suboptimal transduction of the ameloblast-like cells by an adenovirus type 5 (Ad5) vector was consistent with lower levels of the coxsackie-and-adenovirus receptor (CAR) on those cells relative to CAR-positive A549 cells. To overcome CAR -deficiency, we evaluated capsid-modified Ad5 vectors with various genetic capsid modifications including “pK7” and/or “RGD” motif-containing short peptides incorporated in the capsid protein fiber as well as fiber chimera with the Ad serotype 3 (Ad3) fiber “knob” domain. All fiber modifications provided an augmented transduction of AI-ameloblasts, revealed following vector dose normalization in A549 cells with a superior effect (up to 404-fold) of pK7/RGD double modification. This robust infectivity enhancement occurred through vector binding to both αvβ3/αvβ5 integrins and heparan sulfate proteoglycans (HSPGs) highly expressed by AI-ameloblasts as revealed by gene transfer blocking experiments. This work thus not only pioneers establishment of human AI ameloblast-like cell population as a model for in vitro studies but also reveals an optimal infectivity-enhancement strategy for a potential Ad5 vector-mediated gene therapy for AI.
Frontiers in Genetics | 2018
Stephen L. Greene; Olga Mamaeva; David K. Crossman; Changming Lu; Mary MacDougall
Cleidocranial dysplasia (CCD) is an autosomal dominant disorder affecting osteoblast differentiation, chondrocyte maturation, skeletal morphogenesis, and tooth formation. Dental phenotype in CCD include over-retained primary teeth, failed eruption of permanent teeth, and supernumerary teeth. The underlying mechanism is unclear. We previously reported one CCD patient with allelic RUNX2 deletion (CCD-011). In the current study, we determined the transcriptomic profiles of dental pulp cells from this patient compared to one sex-and-age matched non-affected individual. Next Generation RNA sequencing revealed that 60 genes were significantly dysregulated (63% upregulated and 27% downregulated). Among them, IGFBP2 (insulin-like growth factor binding protein-2) was found to be upregulated more than twofold in comparison to control cells. Stable overexpression of RUNX2 in CCD-011 pulp cells resulted in the reduction of IGFBP2. Moreover, ALPL expression was up-regulated in CCD-011 pulp cells after introduction of normal RUNX2. Promoter analysis revealed that there are four proximal putative RUNX2 binding sites in -1.5 kb IGFBP2 promoter region. Relative luciferase assay confirmed that IGFBP2 is a direct target of RUNX2. Immunohistochemistry demonstrated that IGFBP2 was expressed in odontoblasts but not ameloblasts. This report demonstrated the importance of RUNX2 in the regulation of gene profile related to dental pulp cells and provided novel insight of RUNX2 into the negative regulation of IGFBP2.
Journal of Cellular Physiology | 2016
Angela Gullard; Christina M. Croney; Xiangwei Wu; Olga Mamaeva; Philip Sohn; Xu Cao; Mary MacDougall
Overexpression of transforming growth factor‐β1 (TGF‐β1) has been shown to lead to mineralization defects in both the enamel and dentin layers of teeth. A TGFB1 point mutation (H222D), derived from published cases of Camurati–Engelmann disease (CED), has been shown to constitutively activate TGF‐β1, leading to excess bone matrix production. Although CED has been well documented in clinical case reports, there are no published studies on the effect of CED on the dentition. The objective of this study was to determine the dental manifestations of hyperactivated TGF‐β1 signaling using an established mouse model of CED‐derived TGF‐β1 mutation. Murine dental tissues were studied via radiography, micro‐CT, immunohistochemistry, and qRT‐PCR. Results showed that initial decreased dental mineralized tissue density is resolved. Proliferation assays of incisor pulp and alveolar bone cell cultures revealed that cells from transgenic animals displayed a reduced rate of growth compared to alveolar bone cultures from wild‐type mice. TGF‐β family gene expression analysis indicated significant fold changes in the expression of Alpl, Bmp2–5, Col‐1, ‐2, ‐4, and ‐6, Fgf, Mmp, Runx2, Tgfb3, Tfgbr3, and Vdr genes. Assessment of SIBLINGs revealed downregulation of Ibsp, Dmp1, Dspp, Mepe, and Spp1, as well as reduced staining for BMP‐2 and VDR in mesenchymal‐derived pulp tissue in CED animals. Treatment of dental pulp cells with recombinant human TGF‐β1 resulted in increased SIBLING gene expression. Conclusions: Our results provide in vivo evidence suggesting that TFG‐β1 mediates expression of important dentin extracellular matrix components secreted by dental pulp, and when unbalanced, may contribute to abnormal dentin disorders. J. Cell. Physiol. 231: 1106–1113, 2016.
American Journal of Human Genetics | 2015
Frank Rutsch; Mary MacDougall; Changming Lu; Insa Buers; Olga Mamaeva; Yvonne Nitschke; Gillian I. Rice; Heidi Erlandsen; Hans Gerd Kehl; Holger Thiele; Peter Nürnberg; Wolfgang Höhne; Yanick J. Crow; Annette Feigenbaum; Raoul C. M. Hennekam