Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olga Nagaeva is active.

Publication


Featured researches published by Olga Nagaeva.


Journal of Immunology | 2009

Human Placenta Expresses and Secretes NKG2D Ligands via Exosomes that Down-Modulate the Cognate Receptor Expression: Evidence for Immunosuppressive Function

Malin Hedlund; Ann-Christin Stenqvist; Olga Nagaeva; Lennart Kjellberg; Marianne Wulff; Vladimir Baranov; Lucia Mincheva-Nilsson

During mammalian pregnancy maternal-fetal tolerance involves a number of immunosuppressive factors produced by placenta. Recently, placenta-derived exosomes have emerged as new immune regulators in the maternal immune tolerance. Exosomes are membrane nanovesicles with defined morphology, which are secreted from endosomal multivesicular bodies (MVB) upon fusion with the plasma membrane. Previously, we reported that the MHC class I chain-related (MIC) proteins A and B, human ligands of the activating NK cell receptor NKG2D, are expressed by placenta, sorted to MVB of syncytiotrophoblast and probably released via MIC-bearing exosomes. In this report, we show that the second family of human NKG2D ligands, the UL-16 binding proteins (ULBP), is also expressed by placenta. Importantly, this expression was not due to placental CMV infection. Immunoelectron microscopy disclosed that ULBP1–5 are produced and retained in MVB of the syncytiotrophoblast on microvesicles/exosomes. Using human placenta explant cultures and different assays, we demonstrate that exosomes bearing NKG2D ligands are released by human placenta. Isolated placental exosomes carried ULBP1–5 and MIC on their surface and induced down-regulation of the NKG2D receptor on NK, CD8+, and γδ T cells, leading to reduction of their in vitro cytotoxicity without affecting the perforin-mediated lytic pathway. Release of placental NKG2D ligands via exosomes is an alternative mechanism for generation of bioactive soluble form of these ligands. These findings highlight a role for NKG2D ligand-bearing placental exosomes in the fetal immune escape and support the view of placenta as a unique immunosuppressive organ.


Journal of Immunology | 2006

Placenta-Derived Soluble MHC Class I Chain-Related Molecules Down-Regulate NKG2D Receptor on Peripheral Blood Mononuclear Cells during Human Pregnancy: A Possible Novel Immune Escape Mechanism for Fetal Survival

Lucia Mincheva-Nilsson; Olga Nagaeva; Ting Chen; Ulf Stendahl; Julia Antsiferova; Ingrid Mogren; Jenny Hernestål; Vladimir Baranov

Mammalian pregnancy is an intriguing immunological phenomenon where the semiallogeneic fetus is not rejected. Tolerance toward the fetus involves a number of mechanisms associated with modifications of the immune status of the mother. In this study, we strongly suggest a novel mechanism for fetal evasion of maternal immune attack, based on the engagement and down-regulation of the activating NK cell receptor NKG2D on PBMC by soluble MHC class I chain-related proteins A and B (collectively termed MIC). A similar immune escape pathway was previously described in tumors. We found that MIC mRNA was constitutively expressed by human placenta and could be up-regulated upon heat shock treatment. Our immunomorphologic studies showed that the MIC expression in placenta was restricted to the syncytiotrophoblast. Immunoelectron microscopy revealed a dual MIC expression in the syncytiotrophoblast: on the apical and basal cell membrane and in cytoplasmic vacuoles as MIC-loaded microvesicles/exosomes. Soluble MIC molecules were present at elevated levels in maternal blood throughout normal pregnancy and were released by placental explants in vitro. Simultaneously, the cell surface NKG2D expression on maternal PBMC was down-regulated compared with nonpregnant controls. The soluble MIC molecules in pregnancy serum were able to interact with NKG2D and down-regulate the receptor on PBMC from healthy donors, with the consequent inhibition of the NKG2D-dependent cytotoxic response. These findings suggest a new physiological mechanism of silencing the maternal immune system that promotes fetal allograft immune escape and supports the view of the placenta as an immunoregulatory organ.


PLOS ONE | 2011

Thermal- and Oxidative Stress Causes Enhanced Release of NKG2D Ligand-Bearing Immunosuppressive Exosomes in Leukemia/Lymphoma T and B Cells

Malin Hedlund; Olga Nagaeva; Dominic Kargl; Vladimir Baranov; Lucia Mincheva-Nilsson

Immune evasion from NK surveillance related to inadequate NK-cell function has been suggested as an explanation of the high incidence of relapse and fatal outcome of many blood malignancies. In this report we have used Jurkat and Raji cell lines as a model for studies of the NKG2D receptor-ligand system in T-and B cell leukemia/lymphoma. Using real-time quantitative RT-PCR and immunoflow cytometry we show that Jurkat and Raji cells constitutively express mRNA and protein for the stress-inducible NKG2D ligands MICA/B and ULBP1 and 2, and up-regulate the expression in a cell-line specific and stress-specific manner. Furthermore, we revealed by electron microscopy, immunoflow cytometry and western blot that these ligands were expressed and secreted on exosomes, nanometer-sized microvesicles of endosomal origin. Acting as a decoy, the NKG2D ligand-bearing exosomes downregulate the in vitro NKG2D receptor-mediated cytotoxicity and thus impair NK-cell function. Interestingly, thermal and oxidative stress enhanced the exosome secretion generating more soluble NKG2D ligands that aggravated the impairment of the cytotoxic response. Taken together, our results might partly explain the clinically observed NK-cell dysfunction in patients suffering from leukemia/lymphoma. The adverse effect of thermal and oxidative stress, enhancing the release of immunosuppressive exosomes, should be considered when cytostatic and hyperthermal anti-cancer therapies are designed.


American Journal of Reproductive Immunology | 2002

Dominant IL-10 and TGF-beta mRNA expression in gammadeltaT cells of human early pregnancy decidua suggests immunoregulatory potential.

Olga Nagaeva; Lena M. Jonsson; Lucia Mincheva-Nilsson

PROBLEM: To examine the cytokine gene expression in γδT‐cells from human early pregnancy decidua.


Journal of Immunology | 2013

Exosomes Secreted by Human Placenta Carry Functional Fas Ligand and TRAIL Molecules and Convey Apoptosis in Activated Immune Cells, Suggesting Exosome-Mediated Immune Privilege of the Fetus

Ann-Christin Stenqvist; Olga Nagaeva; Vladimir Baranov; Lucia Mincheva-Nilsson

Apoptosis is crucially important in mediating immune privilege of the fetus during pregnancy. We investigated the expression and in vitro apoptotic activity of two physiologically relevant death messengers, the TNF family members Fas ligand (FasL) and TRAIL in human early and term placentas. Both molecules were intracellularly expressed, confined to the late endosomal compartment of the syncytiotrophoblast, and tightly associated to the generation and secretion of placental exosomes. Using immunoelectron microscopy, we show that FasL and TRAIL are expressed on the limiting membrane of multivesicular bodies where, by membrane invagination, intraluminal microvesicles carrying membranal bioactive FasL and TRAIL are formed and released in the extracellular space as exosomes. Analyzing exosomes secreted from placental explant cultures, to our knowledge, we demonstrate for the first time that FasL and TRAIL are clustered on the exosomal membrane as oligomerized aggregates ready to form death-inducing signaling complex. Consistently, placental FasL- and TRAIL-carrying exosomes triggered apoptosis in Jurkat T cells and activated PBMC in a dose-dependent manner. Limiting the expression of functional FasL and TRAIL to exosomes comprise a dual benefit: 1) storage of exosomal FasL and TRAIL in multivesicular bodies is protected from proteolytic cleavage and 2) upon secretion, delivery of preformed membranal death molecules by exosomes rapidly triggers apoptosis. Our results suggest that bioactive FasL- and TRAIL-carrying exosomes, able to convey apoptosis, are secreted by the placenta and tie up the immunomodulatory and protective role of human placenta to its exosome-secreting ability.


PLOS ONE | 2014

Prostate Tumor-Derived Exosomes Down-Regulate NKG2D Expression on Natural Killer Cells and CD8(+) T Cells : Mechanism of Immune Evasion

Marie Lundholm; Mona Schröder; Olga Nagaeva; Vladimir Baranov; Anders Widmark; Lucia Mincheva-Nilsson; Pernilla Wikström

Tumor-derived exosomes, which are nanometer-sized extracellular vesicles of endosomal origin, have emerged as promoters of tumor immune evasion but their role in prostate cancer (PC) progression is poorly understood. In this study, we investigated the ability of prostate tumor-derived exosomes to downregulate NKG2D expression on natural killer (NK) and CD8+ T cells. NKG2D is an activating cytotoxicity receptor whose aberrant loss in cancer plays an important role in immune suppression. Using flow cytometry, we found that exosomes produced by human PC cells express ligands for NKG2D on their surface. The NKG2D ligand-expressing prostate tumor-derived exosomes selectively induced downregulation of NKG2D on NK and CD8+ T cells in a dose-dependent manner, leading to impaired cytotoxic function in vitro. Consistent with these findings, patients with castration-resistant PC (CRPC) showed a significant decrease in surface NKG2D expression on circulating NK and CD8+ T cells compared to healthy individuals. Tumor-derived exosomes are likely involved in this NKG2D downregulation, since incubation of healthy lymphocytes with exosomes isolated from serum or plasma of CRPC patients triggered downregulation of NKG2D expression in effector lymphocytes. These data suggest prostate tumor-derived exosomes as down-regulators of the NKG2D-mediated cytotoxic response in PC patients, thus promoting immune suppression and tumor escape.


Scandinavian Journal of Immunology | 2005

Quantitative Measurement of the Levels of Melanocortin Receptor Subtype 1, 2, 3 and 5 and Pro-Opio-Melanocortin Peptide Gene Expression in Subsets of Human Peripheral Blood Leucocytes

Grethe Andersen; M Hägglund; Olga Nagaeva; Lars Frängsmyr; R. Petrovska; Lucia Mincheva-Nilsson; Jarl E. S. Wikberg

Levels of the melanocortin receptor (MCR) 1, 2, 3 and 5 subtypes and pro‐opio‐melanocortin (POMC) protein mRNA were measured by the real‐time quantitative reverse transcriptase polymerase chain reaction method in CD4+ T helper (Th) cells, CD8+ T cytotoxic cells, CD19+ B cells, CD56+ natural killer (NK) cells, CD14+ monocytes and CD15+ granulocytes from healthy donors. We found high levels of all of the MC1, 2, 3 and 5R subtype mRNA in Th cells and moderate levels in NK cells, monocytes and granulocytes. POMC peptide mRNA was found in all examined leucocyte subsets, but only low levels were present in granulocytes. Our findings suggest a co‐ordinating role for MCR subtypes and their naturally occurring ligands in the co‐operation between innate and adaptive immunity. Moreover, our findings are compatible with earlier finding of MCR‐mediated tolerance induction in Th cells.


Molecular Human Reproduction | 2013

Galectin-1 influences trophoblast immune evasion and emerges as a predictive factor for the outcome of pregnancy

Irene Tirado-González; Nancy Freitag; Gabriela Barrientos; Valerie Shaikly; Olga Nagaeva; Magnus Strand; Lennart Kjellberg; Burghard F. Klapp; Lucia Mincheva-Nilsson; Marie Cohen; Sandra M. Blois

Galectin-1 (gal-1) is expressed at the feto-maternal interface and plays a role in regulating the maternal immune response against placental alloantigens, contributing to pregnancy maintenance. Both decidua and placenta contribute to gal-1 expression and may be important for the maternal immune regulation. The expression of gal-1 within the placenta is considered relevant to cell-adhesion and invasion of trophoblasts, but the role of gal-1 in the immune evasion machinery exhibited by trophoblast cells remains to be elucidated. In this study, we analyzed gal-1 expression in preimplantation human embryos and first-trimester decidua-placenta specimens and serum gal-1 levels to investigate the physiological role played by this lectin during pregnancy. The effect on human leukocyte antigen G (HLA-G) expression in response to stimulation or silencing of gal-1 was also determined in the human invasive, proliferative extravillous cytotrophoblast 65 (HIPEC65) cell line. Compared with normal pregnant women, circulating gal-1 levels were significantly decreased in patients who subsequently suffered a miscarriage. Human embryos undergoing preimplantation development expressed gal-1 on the trophectoderm and inner cell mass. Furthermore, our in vitro experiments showed that exogenous gal-1 positively regulated the membrane-bound HLA-G isoforms (HLA-G1 and G2) in HIPEC65 cells, whereas endogenous gal-1 also induced expression of the soluble isoforms (HLA-G5 and -G6). Our results suggest that gal-1 plays a key role in pregnancy maternal immune regulation by modulating HLA-G expression on trophoblast cells. Circulating gal-1 levels could serve as a predictive factor for pregnancy success in early human gestation.


American Journal of Reproductive Immunology | 2011

Maternal Foxp3 Expressing CD4+ CD25+ and CD4+ CD25− Regulatory T-Cell Populations are Enriched in Human Early Normal Pregnancy Decidua: A Phenotypic Study of Paired Decidual and Peripheral Blood Samples

Tanya Dimova; Olga Nagaeva; Ann-Christin Stenqvist; Malin Hedlund; Lennart Kjellberg; Magnus Strand; Eva Dehlin; Lucia Mincheva-Nilsson

Citation Dimova T, Nagaeva O, Stenqvist A‐Christin, Hedlund M, Kjellberg L, Strand M, Dehlin E, Mincheva‐Nilsson L. Maternal Foxp3 Expressing CD4+ CD25+ and CD4+ CD25− Regulatory T‐Cell Populations are Enriched in Human Early Normal Pregnancy Decidua: A Phenotypic Study of Paired Decidual and Peripheral Blood Samples. Am J Reprod Immunol 2011; 66 (Suppl. 1): 44–56


American Journal of Reproductive Immunology | 2002

An Optimized Technique for Separation of Human Decidual Leukocytes for Cellular and Molecular Analyses

Olga Nagaeva; Karin Bondestam; Jan I. Olofsson; Mats-Göran Damber; Lucia Mincheva-Nilsson

PROBLEM: Human decidua contains a significant number of leukocytes, phenotypically and functionally different from peripheral blood. In vitro studies of decidual leukocytes require constant improvement of cell isolation technique in order to obtain highly purified viable and functionally active cells.

Collaboration


Dive into the Olga Nagaeva's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge