Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vladimir Baranov is active.

Publication


Featured researches published by Vladimir Baranov.


Journal of Immunology | 2006

Placenta-Derived Soluble MHC Class I Chain-Related Molecules Down-Regulate NKG2D Receptor on Peripheral Blood Mononuclear Cells during Human Pregnancy: A Possible Novel Immune Escape Mechanism for Fetal Survival

Lucia Mincheva-Nilsson; Olga Nagaeva; Ting Chen; Ulf Stendahl; Julia Antsiferova; Ingrid Mogren; Jenny Hernestål; Vladimir Baranov

Mammalian pregnancy is an intriguing immunological phenomenon where the semiallogeneic fetus is not rejected. Tolerance toward the fetus involves a number of mechanisms associated with modifications of the immune status of the mother. In this study, we strongly suggest a novel mechanism for fetal evasion of maternal immune attack, based on the engagement and down-regulation of the activating NK cell receptor NKG2D on PBMC by soluble MHC class I chain-related proteins A and B (collectively termed MIC). A similar immune escape pathway was previously described in tumors. We found that MIC mRNA was constitutively expressed by human placenta and could be up-regulated upon heat shock treatment. Our immunomorphologic studies showed that the MIC expression in placenta was restricted to the syncytiotrophoblast. Immunoelectron microscopy revealed a dual MIC expression in the syncytiotrophoblast: on the apical and basal cell membrane and in cytoplasmic vacuoles as MIC-loaded microvesicles/exosomes. Soluble MIC molecules were present at elevated levels in maternal blood throughout normal pregnancy and were released by placental explants in vitro. Simultaneously, the cell surface NKG2D expression on maternal PBMC was down-regulated compared with nonpregnant controls. The soluble MIC molecules in pregnancy serum were able to interact with NKG2D and down-regulate the receptor on PBMC from healthy donors, with the consequent inhibition of the NKG2D-dependent cytotoxic response. These findings suggest a new physiological mechanism of silencing the maternal immune system that promotes fetal allograft immune escape and supports the view of the placenta as an immunoregulatory organ.


PLOS ONE | 2011

Thermal- and Oxidative Stress Causes Enhanced Release of NKG2D Ligand-Bearing Immunosuppressive Exosomes in Leukemia/Lymphoma T and B Cells

Malin Hedlund; Olga Nagaeva; Dominic Kargl; Vladimir Baranov; Lucia Mincheva-Nilsson

Immune evasion from NK surveillance related to inadequate NK-cell function has been suggested as an explanation of the high incidence of relapse and fatal outcome of many blood malignancies. In this report we have used Jurkat and Raji cell lines as a model for studies of the NKG2D receptor-ligand system in T-and B cell leukemia/lymphoma. Using real-time quantitative RT-PCR and immunoflow cytometry we show that Jurkat and Raji cells constitutively express mRNA and protein for the stress-inducible NKG2D ligands MICA/B and ULBP1 and 2, and up-regulate the expression in a cell-line specific and stress-specific manner. Furthermore, we revealed by electron microscopy, immunoflow cytometry and western blot that these ligands were expressed and secreted on exosomes, nanometer-sized microvesicles of endosomal origin. Acting as a decoy, the NKG2D ligand-bearing exosomes downregulate the in vitro NKG2D receptor-mediated cytotoxicity and thus impair NK-cell function. Interestingly, thermal and oxidative stress enhanced the exosome secretion generating more soluble NKG2D ligands that aggravated the impairment of the cytotoxic response. Taken together, our results might partly explain the clinically observed NK-cell dysfunction in patients suffering from leukemia/lymphoma. The adverse effect of thermal and oxidative stress, enhancing the release of immunosuppressive exosomes, should be considered when cytostatic and hyperthermal anti-cancer therapies are designed.


Molecular Therapy | 2012

Microvesicle-associated aav vector as a novel gene delivery system

Casey A. Maguire; Leonora Balaj; Sarada Sivaraman; Matheus H.W. Crommentuijn; Maria Ericsson; Lucia Mincheva-Nilsson; Vladimir Baranov; Davide Gianni; Bakhos A. Tannous; Miguel Sena-Esteves; Xandra O. Breakefield; Johan Skog

Adeno-associated virus (AAV) vectors have shown remarkable efficiency for gene delivery to cultured cells and in animal models of human disease. However, limitations to AAV vectored gene transfer exist after intravenous transfer, including off-target gene delivery (e.g., liver) and low transduction of target tissue. Here, we show that during production, a fraction of AAV vectors are associated with microvesicles/exosomes, termed vexosomes (vector-exosomes). AAV capsids associated with the surface and in the interior of microvesicles were visualized using electron microscopy. In cultured cells, vexosomes outperformed conventionally purified AAV vectors in transduction efficiency. We found that purified vexosomes were more resistant to a neutralizing anti-AAV antibody compared to conventionally purified AAV. Finally, we show that vexosomes bound to magnetic beads can be attracted to a magnetized area in cultured cells. Vexosomes represent a unique entity which offers a promising strategy to improve gene delivery.


American Journal of Reproductive Immunology | 2010

REVIEW ARTICLE: The Role of Placental Exosomes in Reproduction

Lucia Mincheva-Nilsson; Vladimir Baranov

Citation Mincheva‐Nilsson L, Baranov V. The Role of Placental Exosomes in Reproduction. Am J Reprod Immunol 2010


Journal of Immunology | 2013

Exosomes Secreted by Human Placenta Carry Functional Fas Ligand and TRAIL Molecules and Convey Apoptosis in Activated Immune Cells, Suggesting Exosome-Mediated Immune Privilege of the Fetus

Ann-Christin Stenqvist; Olga Nagaeva; Vladimir Baranov; Lucia Mincheva-Nilsson

Apoptosis is crucially important in mediating immune privilege of the fetus during pregnancy. We investigated the expression and in vitro apoptotic activity of two physiologically relevant death messengers, the TNF family members Fas ligand (FasL) and TRAIL in human early and term placentas. Both molecules were intracellularly expressed, confined to the late endosomal compartment of the syncytiotrophoblast, and tightly associated to the generation and secretion of placental exosomes. Using immunoelectron microscopy, we show that FasL and TRAIL are expressed on the limiting membrane of multivesicular bodies where, by membrane invagination, intraluminal microvesicles carrying membranal bioactive FasL and TRAIL are formed and released in the extracellular space as exosomes. Analyzing exosomes secreted from placental explant cultures, to our knowledge, we demonstrate for the first time that FasL and TRAIL are clustered on the exosomal membrane as oligomerized aggregates ready to form death-inducing signaling complex. Consistently, placental FasL- and TRAIL-carrying exosomes triggered apoptosis in Jurkat T cells and activated PBMC in a dose-dependent manner. Limiting the expression of functional FasL and TRAIL to exosomes comprise a dual benefit: 1) storage of exosomal FasL and TRAIL in multivesicular bodies is protected from proteolytic cleavage and 2) upon secretion, delivery of preformed membranal death molecules by exosomes rapidly triggers apoptosis. Our results suggest that bioactive FasL- and TRAIL-carrying exosomes, able to convey apoptosis, are secreted by the placenta and tie up the immunomodulatory and protective role of human placenta to its exosome-secreting ability.


PLOS ONE | 2014

Prostate Tumor-Derived Exosomes Down-Regulate NKG2D Expression on Natural Killer Cells and CD8(+) T Cells : Mechanism of Immune Evasion

Marie Lundholm; Mona Schröder; Olga Nagaeva; Vladimir Baranov; Anders Widmark; Lucia Mincheva-Nilsson; Pernilla Wikström

Tumor-derived exosomes, which are nanometer-sized extracellular vesicles of endosomal origin, have emerged as promoters of tumor immune evasion but their role in prostate cancer (PC) progression is poorly understood. In this study, we investigated the ability of prostate tumor-derived exosomes to downregulate NKG2D expression on natural killer (NK) and CD8+ T cells. NKG2D is an activating cytotoxicity receptor whose aberrant loss in cancer plays an important role in immune suppression. Using flow cytometry, we found that exosomes produced by human PC cells express ligands for NKG2D on their surface. The NKG2D ligand-expressing prostate tumor-derived exosomes selectively induced downregulation of NKG2D on NK and CD8+ T cells in a dose-dependent manner, leading to impaired cytotoxic function in vitro. Consistent with these findings, patients with castration-resistant PC (CRPC) showed a significant decrease in surface NKG2D expression on circulating NK and CD8+ T cells compared to healthy individuals. Tumor-derived exosomes are likely involved in this NKG2D downregulation, since incubation of healthy lymphocytes with exosomes isolated from serum or plasma of CRPC patients triggered downregulation of NKG2D expression in effector lymphocytes. These data suggest prostate tumor-derived exosomes as down-regulators of the NKG2D-mediated cytotoxic response in PC patients, thus promoting immune suppression and tumor escape.


American Journal of Reproductive Immunology | 2014

Placenta-derived exosomes and syncytiotrophoblast microparticles and their role in human reproduction : immune modulation for pregnancy success

Lucia Mincheva-Nilsson; Vladimir Baranov

The syncytiotrophoblast (STB) of human placenta constitutively produces and secretes extracellular vesicles of different size, morphology and function that enter the maternal circulation, and participate in the maternal–fetal cross‐talk during pregnancy. Syncytiotrophoblast‐derived microvesicles/microparticles (STBM) are larger microvesicles (0.2–2 μm) shed by the apical plasma membrane of the STB as a result of cell activation and turnover. Simultaneously with the STBM shedding, the STB produces and secretes exosomes – nanosized (30–100/150 nm) membrane‐bound microvesicles that originate from the endosomal compartment. They convey cell–cell contact ‘by proxy’ transporting signals/packages of information between donor and recipient cells locally or/and at a distance. STBM and exosomes, delivered directly in the maternal blood surrounding the chorionic villi of the placenta, have contrasting biological functions. While the exosomes are immunosuppressive down regulating maternal immunity in pluripotent ways, the main effects of STBM on the maternal immune system are pro‐inflammatory, immune activating, and pro‐coagulant. Since both STBM and exosomes are present in the maternal circulation throughout normal pregnancy logical questions are what is the net effect of these vesicles on the maternal immune system and is this effect beneficial or detrimental to pregnancy. In this review, the current knowledge about placenta‐derived extracellular vesicles with a main focus on exosomes is summarized and discussed. In a concluding remark, a hypothetical proposal on how STBM and exosomes might interact in pregnancy is discussed and a way to evaluate this interaction is suggested.


Trends in Microbiology | 2001

Is there a role for CEA in innate immunity in the colon

Sten Hammarström; Vladimir Baranov

Carcinoembryonic antigen (CEA) is a well known tumor marker associated with the progression of colorectal tumors. The CEA family of glycoproteins has been fully characterized and the function of some of its members is now beginning to be understood. Here, we advance the hypothesis that, rather than functioning in cell adhesion as has been suggested previously, CEA plays a role in protecting the colonic mucosa from microbial invasion. This hypothesis is based on new microscopic, molecular, phylogenetic and microbiological evidence.


Seminars in Cancer Biology | 2014

Cancer exosomes and NKG2D receptor-ligand interactions: Impairing NKG2D-mediated cytotoxicity and anti-tumour immune surveillance

Lucia Mincheva-Nilsson; Vladimir Baranov

Human cancers constitutively produce and release endosome-derived nanometer-sized vesicles called exosomes that carry biologically active proteins, messenger and micro RNAs and serve as vehicles of intercellular communication. The tumour exosomes are present in the blood, urine and various malignant effusions such as peritoneal and pleural fluid of cancer patients and can modulate immune cells and responses thus deranging the immune system of cancer patients and giving advantage to the cancer to establish and spread itself. Here, the role of exosomes in the NKG2D receptor-ligand systems interactions is discussed. The activating NK cell receptor NKG2D and its multiple ligands, the MHC class I-related chain (MIC) A/B and the retinoic acid transcript-1/UL-16 binding proteins (RAET1/ULBP) 1-6 comprise a powerful stress-inducible danger detector system that targets infected, inflamed and malignantly transformed cells and plays a decisive role in anti-tumour immune surveillance. Mounting evidence reveals that the MIC- and RAET1/ULBP ligand family members are enriched in the endosomal compartment of various tumour cells and expressed and released into the intercellular space and bodily fluids on exosomes thus preserving their entire molecule, three-dimensional protein structure and biologic activity. The NKG2D ligand-expressing exosomes serve as decoys with a powerful ability to down regulate the cognate receptor and impair the cytotoxic function of NK-, NKT-, gamma/delta- and cytotoxic T cells. This review summarizes recent findings concerning the role of NKG2D receptor-ligand system in cancer with emphasis on regulation of NKG2D ligand expression and the immunosuppressive role of exosomally expressed NKG2D ligands.


Scandinavian Journal of Immunology | 2009

Contribution of Intestinal Epithelial Cells to Innate Immunity of the Human Gut – Studies on Polarized Monolayers of Colon Carcinoma Cells

Gangwei Ou; Vladimir Baranov; E Lundmark; Sten Hammarström; Marie-Louise Hammarström

The aim was to establish an in vitro model for studies of innate defence mechanisms of human intestinal epithelium. Ultrastructural characterization and determination of mRNA expression levels for apical glycocalyx and mucous components showed that polarized, tight monolayers of the colon carcinoma cell lines T84 and Caco2 acquire the features of mature‐ and immature columnar epithelial cells, respectively. Polarized monolayers were challenged with non‐pathogenic Gram+ and Gram− bacteria from the apical side and the proinflammatory cytokines interferon‐γ (IFN‐γ), tumour necrosis factor‐α (TNF‐α) and interleukin‐1β (IL‐1β) from the basolateral side. Immune responses were estimated as changes in mRNA expression levels for the mucous component mucin‐2 (MUC2), the glycocalyx components carcinoembryonic antigen (CEA), CEA‐related cell adhesion molecule‐1 (CEACAM1), CEACAM6, CEACAM7 and MUC3, the antimicrobial factors human β‐defensin‐1 (hBD1), hBD2, hBD3 and lysozyme, the chemokine IL‐8 and the cytokines IL‐6 and TNF‐α. Tight monolayer cells were generally unresponsive to bacterial challenge, but increased their hBD2 levels when challenged with Bacillus megaterium. T84 cells also increased their TNF‐α levels upon bacterial challenge. Tight monolayer cells responded to cytokine challenge suggesting awareness of basolateral attack. TNF‐α induced significantly increased levels of IL‐8 and TNF‐α itself in both cell lines suggesting recruitment and activation of immune cells in the underlying mucosa in vivo. Cytokine challenge also increased levels of CEACAM1, which includes two functionally different forms, CEACAM1‐L and CEACAM1‐S. In T84 cells, IFN‐γ was selective for CEACAM1‐L while TNF‐α upregulated both forms. Increased CEACAM1 expression may influence epithelial function and communication between epithelial cells and intraepithelial lymphocytes.

Collaboration


Dive into the Vladimir Baranov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge