Olga Nikolaeva
University of Oklahoma
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Olga Nikolaeva.
Developmental Biology | 2011
Krysten M. Farjo; Gennadiy Moiseyev; Olga Nikolaeva; Lisa L. Sandell; Paul A. Trainor; Jian Xing Ma
Retinoic acid (atRA) signaling is essential for regulating embryonic development, and atRA levels must be tightly controlled in order to prevent congenital abnormalities and fetal death which can result from both excessive and insufficient atRA signaling. Cellular enzymes synthesize atRA from Vitamin A, which is obtained from dietary sources. Embryos express multiple enzymes that are biochemically capable of catalyzing the initial step of Vitamin A oxidation, but the precise contribution of these enzymes to embryonic atRA synthesis remains unknown. Using Rdh10(trex)-mutant embryos, dietary supplementation of retinaldehyde, and retinol dehydrogenase (RDH) activity assays, we demonstrate that RDH10 is the primary RDH responsible for the first step of embryonic Vitamin A oxidation. Moreover, we show that this initial step of atRA synthesis occurs predominantly in a membrane-bound cellular compartment, which prevents inhibition by the cytosolic cellular retinol-binding protein (RBP1). These studies reveal that widely expressed cytosolic enzymes with RDH activity play a very limited role in embryonic atRA synthesis under normal dietary conditions. This provides a breakthrough in understanding the precise cellular mechanisms that regulate Vitamin A metabolism and the synthesis of the essential embryonic regulatory molecule atRA.
Journal of Biological Chemistry | 2006
Jun Peng; Chibing Tan; G. Jane Roberts; Olga Nikolaeva; Zhi Zhang; Suzanne M. Lapolla; Steve Primorac; David W. Andrews; Jialing Lin
During initiation of apoptosis, Bcl-2 family proteins regulate the permeability of mitochondrial outer membrane. BH3-only protein, tBid, activates pro-apoptotic Bax to release cytochrome c from mitochondria. tBid also activates anti-apoptotic Bcl-2 in the mitochondrial outer membrane, changing it from a single-spanning to a multispanning conformation that binds the active Bax and inhibits cytochrome c release. However, it is not known whether other mitochondrial proteins are required to elicit the tBid-induced Bcl-2 conformational alteration. To define the minimal components that are required for the functionally important Bcl-2 conformational alteration, we reconstituted the reaction using purified proteins and liposomes. We found that purified tBid was sufficient to induce a conformational alteration in the liposome-tethered, but not cytosolic Bcl-2, resulting in a multispanning form that is similar to the one found in the mitochondrial outer membrane of drug-treated cells. Mutations that abolished tBid/Bcl-2 interaction also abolished the conformational alteration, demonstrating that a direct tBid/Bcl-2 interaction at the membrane is both required and sufficient to elicit the conformational alteration. Furthermore, active Bax also elicited the Bcl-2 conformational alteration. Bcl-2 mutants that displayed increased or decreased activity in the conformational alteration assay showed corresponding activities in inhibiting pore formation by Bax in vitro and in preventing apoptosis in vivo. Thus, there is a strong correlation between the direct interaction of membrane-bound Bcl-2 and tBid with activation of Bcl-2 in vitro and in vivo.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Gennadiy Moiseyev; Olga Nikolaeva; Ying Chen; Krysten Farjo; Yusuke Takahashi; Jian Xing Ma
Stargardt disease (STGD) is the major form of inherited juvenile macular degeneration. Pyridinium bis-retinoid A2E is a major component of lipofuscin which accumulates in retinal pigment epithelium (RPE) cells in STGD and contributes to the disease pathogenesis. However, the precise role of A2E in vision loss is unclear. Here we report that A2E efficiently inhibits RPE65 isomerohydrolase, a key enzyme in the visual cycle. Subretinal injection of A2E significantly inhibited retinoid isomerohydrolase activity in mice. Likewise, A2E also inhibited isomerohydrolase activity in cells coexpressing RPE65, lecithin retinol acyltransferase (LRAT), and cellular retinaldehyde-binding protein. In vitro isomerohydrolase activity assays confirmed that A2E inhibited enzymatic activity of recombinant RPE65 in a concentration-dependent manner, but did not inhibit LRAT activity. The inhibition type for isomerohydrolase was found to be reversible and competitive with Ki = 13.6 μM. To determine the direct interaction of A2E with RPE65 protein, fluorescence binding assays were performed. As shown by fluorimetric titration, binding of purified RPE65 with A2E enhanced the bis-retinoid fluorescence. Consistently, the fluorescence of RPE65 decreased upon incubation with A2E. Both of these experiments suggest a direct, specific binding of A2E to RPE65. The binding constant for A2E and purified RPE65 was calculated to be 250 nM. These results demonstrate that A2E inhibits the regeneration of 11-cis retinal, the chromophore of visual pigments, which represents a unique mechanism by which A2E may impair vision in STGD.
Journal of Biological Chemistry | 2011
Nawajes A. Mandal; Gennadiy Moiseyev; Michael H. Elliott; Anne Kasus-Jacobi; Xiaoman Li; Hui Chen; Lixin Zheng; Olga Nikolaeva; Robert A. Floyd; Jian Xing Ma; Robert E. Anderson
α-Phenyl-N-tert-butylnitrone (PBN), a free radical spin trap, has been shown previously to protect retinas against light-induced neurodegeneration, but the mechanism of protection is not known. Here we report that PBN-mediated retinal protection probably occurs by slowing down the rate of rhodopsin regeneration by inhibiting RPE65 activity. PBN (50 mg/kg) protected albino Sprague-Dawley rat retinas when injected 0.5–12 h before exposure to damaging light at 2,700 lux intensity for 6 h but had no effect when administered after the exposure. PBN injection significantly inhibited in vivo recovery of rod photoresponses and the rate of recovery of functional rhodopsin photopigment. Assays for visual cycle enzyme activities indicated that PBN inhibited one of the key enzymes of the visual cycle, RPE65, with an IC50 = 0.1 mm. The inhibition type for RPE65 was found to be uncompetitive with Ki = 53 μm. PBN had no effect on the activity of other visual cycle enzymes, lecithin retinol acyltransferase and retinol dehydrogenases. Interestingly, a more soluble form of PBN, N-tert-butyl-α-(2-sulfophenyl) nitrone, which has similar free radical trapping activity, did not protect the retina or inhibit RPE65 activity, providing some insight into the mechanism of PBN specificity and action. Slowing down the visual cycle is considered a treatment strategy for retinal diseases, such as Stargardt disease and dry age-related macular degeneration, in which toxic byproducts of the visual cycle accumulate in retinal cells. Thus, PBN inhibition of RPE65 catalytic action may provide therapeutic benefit for such retinal diseases.
FEBS Journal | 2009
Olga Nikolaeva; Yusuke Takahashi; Gennadiy Moiseyev; Jian Xing Ma
Generation of 11‐cis‐retinol from all‐trans‐retinyl ester in the retinal pigment epithelium is a critical step in the visual cycle and is essential for perception of light. Recent findings from cell culture models suggest that protein RPE65 is the retinoid isomerohydrolase that catalyzes the reaction. However, previous attempts to detect the enzymatic activity of purified RPE65 were unsuccessful, and thus its enzymatic function remains controversial. Here, we developed a novel liposome‐based assay for isomerohydrolase activity. The results showed that purified recombinant chicken RPE65 had a high affinity for all‐trans‐retinyl palmitate‐containing liposomes and demonstrated a robust isomerohydrolase activity. Furthermore, we found that all‐trans‐retinyl ester must be incorporated into the phospholipid membrane to serve as a substrate for isomerohydrolase. This assay system using purified RPE65 enabled us to measure kinetic parameters for the enzymatic reaction catalyzed by RPE65. These results provide conclusive evidence that RPE65 is the isomerohydrolase of the visual cycle.
FEBS Journal | 2011
Yusuke Takahashi; Gennadiy Moiseyev; Ying Chen; Olga Nikolaeva; Jian Xing Ma
Cone photoreceptors have faster light responses than rods and a higher demand for 11‐cis retinal (11cRAL), the chromophore of visual pigments. RPE65 is the isomerohydrolase in the retinal pigment epithelium (RPE) that converts all‐trans retinyl ester to 11‐cis retinol, a key step in the visual cycle for regenerating 11cRAL. Accumulating evidence suggests that cone‐dominant species express an alternative isomerase, likely in retinal Müller cells, to meet the high demand for the chromophore by cones. In the present study, we describe the identification and characterization of a novel isomerohydrolase, RPE65c, from the cone‐dominant zebrafish retina. RPE65c shares 78% amino acid sequence identity with RPE‐specific zebrafish RPE65a (orthologue of human RPE65) and retains all of the known key residues for the enzymatic activity of RPE65. Similar to the other RPE‐specific RPE65, RPE65c was present in both the membrane and cytosolic fractions, used all‐trans retinyl ester as its substrate and required iron for its enzymatic activity. However, immunohistochemistry detected RPE65c in the inner retina, including Müller cells, but not in the RPE. Furthermore, double‐immunostaining of dissociated retinal cells using antibodies for RPE65c and glutamine synthetase (a Müller cell marker), showed that RPE65c co‐localized with the Müller cell marker. These results suggest that RPE65c is the alternative isomerohydrolase in the intra‐retinal visual cycle, providing 11cRAL to cone photoreceptors in cone‐dominant species. Identification of an alternative visual cycle will contribute to the understanding of the functional differences of rod and cone photoreceptors.
Biochemical and Biophysical Research Communications | 2010
Olga Nikolaeva; Yusuke Takahashi; Gennadiy Moiseyev; Jian Xing Ma
RPE65 is the isomerohydrolase essential for regeneration of 11-cis retinal, the chromophore of visual pigments. Here we compared the impacts of two mutations in RPE65, E417Q identified in patients with Leber congenital amaurosis (LCA), and E417D on isomerohydrolase activity. Although both mutations decreased the stability of RPE65 and altered its sub-cellular localization, E417Q abolished isomerohydrolase activity whereas the E417D mutant retained partial enzymatic activity suggesting that the negative charge of E417 is important for RPE65 catalytic activity. Loss of charge at this position may represent a mechanism by which the E417Q mutation causes blindness in LCA patients.
FEBS Journal | 2011
Yusuke Takahashi; Gennadiy Moiseyev; Ying Chen; Krysten M. Farjo; Olga Nikolaeva; Jian Xing Ma
13‐cis Retinoic acid (13cRA), a stereoisomeric form of retinoic acid, is naturally generated in the body and is also used clinically to treat acute promyelocytic leukemia, some skin diseases and cancer. Furthermore, it has been suggested that 13cRA modulates brain neurochemical systems because increased 13cRA levels are correlated with depression and increased suicidal tendencies. However, the mechanism for the generation of endogenous 13cRA is not well understood. The present study identified and characterized a novel enzyme in zebrafish brain, 13‐cis isomerohydrolase (13cIMH) (EC 5.2.1.7), which exclusively generated 13‐cis retinol and can be oxidized to 13cRA. 13cIMH shares 74% amino acid sequence identity with human retinal pigment epithelium specific 65 kDa protein (RPE65), an 11‐cis isomerohydrolase in the visual cycle, and retains the key residues essential for the isomerohydrolase activity of RPE65. Similar to RPE65, 13cIMH is a membrane‐associated protein, requires all‐trans retinyl ester as its intrinsic substrate, and its enzymatic activity is dependent on iron. The purified 13cIMH converted all‐trans retinyl ester exclusively to 13‐cis retinol with Km = 2.6 μm and kcat = 4.4 × 10−4·s−1. RT‐PCR, western blot analysis and immunohistochemistry detected 13cIMH expression in the brain. These results suggest that 13cIMH may play a key role in the generation of 13cRA, as well as in the modulation of neuronal functions in the brain.
Biochemical Journal | 2011
Olga Nikolaeva; Gennadiy Moiseyev; Karla K. Rodgers; Jian Xing Ma
The visual cycle is a multi-step pathway to recycle 11-cis retinal, the chromophore for both rod and cone visual pigments. The isomerohydrolase RPE65, a membrane-associated enzyme, converts atRE (all-trans-retinyl ester) to 11-cis-retinol, a key step in the visual cycle. Previously, it has been shown that membrane association of RPE65 is essential for its catalytic activity. Using purified recombinant chicken RPE65 and an in vitro liposome-based floatation assay, we present evidence that the RPE65 membrane-binding affinity was significantly facilitated by incorporation of atRE, the substrate of RPE65, into liposomal membrane. Using tryptophan emission fluorescence quenching and CD spectroscopy, we showed that, upon membrane binding, RPE65 undergoes conformational changes at both the tertiary and secondary structural levels. Specifically, tryptophan fluorescence quenching showed that the tertiary RPE65 structure became more open towards the hydrophilic environment upon its association with the membrane. Simultaneously, a decrease in the α-helix content of RPE65 was revealed upon binding with the lipid membrane containing atRE. These results demonstrated that RPE65s functional activity depends on its conformational changes caused by its association with the membrane.
Biochemistry | 2012
Yusuke Takahashi; Gennadiy Moiseyev; Olga Nikolaeva; Jian Xing Ma
The efficient recycling of the chromophore of visual pigments, 11-cis-retinal, through the retinoid visual cycle is an essential process for maintaining normal vision. RPE65 is the isomerohydrolase in retinal pigment epithelium and generates predominantly 11-cis-retinol (11cROL) and a minor amount of 13-cis-retinol (13cROL), from all-trans-retinyl ester (atRE). We recently identified and characterized novel homologues of RPE65, RPE65c, and 13-cis-isomerohydrolase (13cIMH), which are expressed in the zebrafish inner retina and brain, respectively. Although these two homologues have 97% identical amino acid sequences, they exhibit distinct product specificities. Under the same assay conditions, RPE65c generated predominantly 11cROL, similar to RPE65, while 13cIMH generated exclusively 13cROL from atRE substrate. To study the impacts of the key residues determining the isomerization product specificity of RPE65, we replaced candidate residues by site-directed mutagenesis in RPE65c and 13cIMH. Point mutations at residues Tyr58, Phe103, and Leu133 in RPE65c resulted in significantly altered isomerization product specificities. In particular, our results showed that residue 58 is a primary determinant of isomerization specificity, because the Y58N mutation in RPE65c and its reciprocal N58Y mutation in 13cIMH completely reversed the respective enzyme isomerization product specificities. These findings will contribute to the elucidation of molecular mechanisms underlying the isomerization reaction catalyzed by RPE65.