Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olga Ornatsky is active.

Publication


Featured researches published by Olga Ornatsky.


Science | 2011

Single-Cell Mass Cytometry of Differential Immune and Drug Responses Across a Human Hematopoietic Continuum

Sean C. Bendall; Erin F. Simonds; Peng Qiu; El-ad D. Amir; Peter O. Krutzik; Rachel Finck; Robert V. Bruggner; Rachel D. Melamed; Angelica Trejo; Olga Ornatsky; Robert S. Balderas; Sylvia K. Plevritis; Karen Sachs; Dana Pe’er; Scott D. Tanner; Garry P. Nolan

Simultaneous measurement of more than 30 properties in individual human cells is used to characterize signaling in the immune system. Flow cytometry is an essential tool for dissecting the functional complexity of hematopoiesis. We used single-cell “mass cytometry” to examine healthy human bone marrow, measuring 34 parameters simultaneously in single cells (binding of 31 antibodies, viability, DNA content, and relative cell size). The signaling behavior of cell subsets spanning a defined hematopoietic hierarchy was monitored with 18 simultaneous markers of functional signaling states perturbed by a set of ex vivo stimuli and inhibitors. The data set allowed for an algorithmically driven assembly of related cell types defined by surface antigen expression, providing a superimposable map of cell signaling responses in combination with drug inhibition. Visualized in this manner, the analysis revealed previously unappreciated instances of both precise signaling responses that were bounded within conventionally defined cell subsets and more continuous phosphorylation responses that crossed cell population boundaries in unexpected manners yet tracked closely with cellular phenotype. Collectively, such single-cell analyses provide system-wide views of immune signaling in healthy human hematopoiesis, against which drug action and disease can be compared for mechanistic studies and pharmacologic intervention.


Molecular Systems Biology | 2007

Large‐scale mapping of human protein–protein interactions by mass spectrometry

Rob M. Ewing; Peter Chu; Fred Elisma; Hongyan Li; Paul Taylor; Shane Climie; Linda McBroom-Cerajewski; Mark D. Robinson; Liam O'Connor; Michael Li; Rod Taylor; Moyez Dharsee; Yuen Ho; Adrian Heilbut; Lynda Moore; Shudong Zhang; Olga Ornatsky; Yury V. Bukhman; Martin Ethier; Yinglun Sheng; Julian Vasilescu; Mohamed Abu-Farha; Jean-Philippe Lambert; Henry S. Duewel; Ian I. Stewart; Bonnie Kuehl; Kelly Hogue; Karen Colwill; Katharine Gladwish; Brenda Muskat

Mapping protein–protein interactions is an invaluable tool for understanding protein function. Here, we report the first large‐scale study of protein–protein interactions in human cells using a mass spectrometry‐based approach. The study maps protein interactions for 338 bait proteins that were selected based on known or suspected disease and functional associations. Large‐scale immunoprecipitation of Flag‐tagged versions of these proteins followed by LC‐ESI‐MS/MS analysis resulted in the identification of 24 540 potential protein interactions. False positives and redundant hits were filtered out using empirical criteria and a calculated interaction confidence score, producing a data set of 6463 interactions between 2235 distinct proteins. This data set was further cross‐validated using previously published and predicted human protein interactions. In‐depth mining of the data set shows that it represents a valuable source of novel protein–protein interactions with relevance to human diseases. In addition, via our preliminary analysis, we report many novel protein interactions and pathway associations.


Analytical Chemistry | 2009

Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry.

Dmitry Bandura; Vladimir Baranov; Olga Ornatsky; Alexei Antonov; Robert Kinach; Xudong Lou; Serguei Pavlov; Sergey Vorobiev; John E. Dick; Scott D. Tanner

A novel instrument for real time analysis of individual biological cells or other microparticles is described. The instrument is based on inductively coupled plasma time-of-flight mass spectrometry and comprises a three-aperture plasma-vacuum interface, a dc quadrupole turning optics for decoupling ions from neutral components, an rf quadrupole ion guide discriminating against low-mass dominant plasma ions, a point-to-parallel focusing dc quadrupole doublet, an orthogonal acceleration reflectron analyzer, a discrete dynode fast ion detector, and an 8-bit 1 GHz digitizer. A high spectrum generation frequency of 76.8 kHz provides capability for collecting multiple spectra from each particle-induced transient ion cloud, typically of 200-300 micros duration. It is shown that the transients can be resolved and characterized individually at a peak frequency of 1100 particles per second. Design considerations and optimization data are presented. The figures of merit of the instrument are measured under standard inductively coupled plasma (ICP) operating conditions (<3% cerium oxide ratio). At mass resolution (full width at half-maximum) M/DeltaM > 900 for m/z = 159, the sensitivity with a standard sample introduction system of >1.4 x 10(8) ion counts per second per mg L(-1) of Tb and an abundance sensitivity of (6 x 10(-4))-(1.4 x 10(-3)) (trailing and leading masses, respectively) are shown. The mass range (m/z = 125-215) and abundance sensitivity are sufficient for elemental immunoassay with up to 60 distinct available elemental tags. When <15 elemental tags are used, a higher sensitivity mode at lower resolution (M/DeltaM > 500) can be used, which provides >2.4 x 10(8) cps per mg L(-1) of Tb, at (1.5 x 10(-3))-(5.0 x 10(-3)) abundance sensitivity. The real-time simultaneous detection of multiple isotopes from individual 1.8 microm polystyrene beads labeled with lanthanides is shown. A real time single cell 20 antigen expression assay of model cell lines and leukemia patient samples immuno-labeled with lanthanide-tagged antibodies is presented.


Cell Stem Cell | 2010

A Distinctive DNA Damage Response in Human Hematopoietic Stem Cells Reveals an Apoptosis-Independent Role for p53 in Self-Renewal

Michael Milyavsky; Olga I. Gan; Magan Trottier; Martin Komosa; Ofer Tabach; Faiyaz Notta; Eric R. Lechman; Karin G. Hermans; Kolja Eppert; Zhanna Konovalova; Olga Ornatsky; Eytan Domany; M. Stephen Meyn; John E. Dick

Highly regenerative tissues such as blood must possess effective DNA damage responses (DDR) that balance long-term regeneration with protection from leukemogenesis. Hematopoietic stem cells (HSCs) sustain life-long blood production, yet their response to DNA damage remains largely unexplored. We report that human HSCs exhibit delayed DNA double-strand break rejoining, persistent gammaH2AX foci, and enhanced p53- and ASPP1-dependent apoptosis after gamma-radiation compared to progenitors. p53 inactivation or Bcl-2 overexpression reduced radiation-induced apoptosis and preserved in vivo repopulating HSC function. Despite similar protection from irradiation-induced apoptosis, only Bcl-2-overexpressing HSCs showed higher self-renewal capacity, establishing that intact p53 positively regulates self-renewal independently from apoptosis. The reduced self-renewal of HSCs with inactivated p53 was associated with increased spontaneous gammaH2AX foci in secondary transplants of HSCs. Our data reveal distinct physiological roles of p53 that together ensure optimal HSC function: apoptosis regulation and prevention of gammaH2AX foci accumulation upon HSC self-renewal.


Analytical Chemistry | 2008

Study of Cell Antigens and Intracellular DNA by Identification of Element-Containing Labels and Metallointercalators Using Inductively Coupled Plasma Mass Spectrometry

Olga Ornatsky; Xudong Lou; Mark Nitz; Schäfer S; Sheldrick Ws; Vladimir Baranov; Dmitry Bandura; Scott D. Tanner

The enumeration of absolute cell numbers and cell proliferation in clinical samples is important for diagnostic and research purposes. Detection of cellular DNA with fluorescent dyes is the most commonly used approach for cell enumeration in cytometry. Inductively coupled plasma mass spectrometry (ICPMS) has been recently introduced to the field of protein and cell surface antigen identification via ICPMS-linked immunoassays using element-labeled affinity reagents such as gold and lanthanide-conjugated antibodies. In the present work, we describe novel methods for using metallointercalators that irreversibly bind DNA and low concentrations of rare earth metals added to cell growth media for rapid and sensitive measurement of cell numbers by mass spectrometry. We show that Ir- and Rh-containing metallointercalators are useful reagents for labeling cells and normalizing signals when studying antigen expression on different types and numbers of cells. Results are presented for solution analysis performed by conventional ICPMS and compared to measurements obtained on the novel flow cytometer mass spectrometer (FC-MS) instrument, designed to analyze multiple antigens and DNA simultaneously in single cells.


Pure and Applied Chemistry | 2008

Flow cytometer with mass spectrometer detection for massively multiplexed single-cell biomarker assay

Scott D. Tanner; Dmitry Bandura; Olga Ornatsky; Vladimir Baranov; Mark Nitz; Mitchell A. Winnik

This paper describes the development and application of new metal-tagging reagents and a novel mass spectrometer (MS) detector for a flow cytometer that enables highly multiplexed measurement of many biomarkers in individual cells. A new class of tagging reagents, based on an acrylic polymer backbone that incorporates a reproducible number of lanthanide elements, has been developed. When linked to antibodies that specifically recognize target proteins of interest, determination of the tag elements is diagnostic for the presence and quantification of the antigen. The use of enriched stable isotope tags provides the opportunity for multiparametric assay. The new instrument uses inductively coupled plasma (ICP) to vaporize, atomize, and ionize individual cells that have been probed using the metal-labeled antibodies. The elemental composition, specifically of the metal tags, is recorded simultaneously using a time-of-flight (TOF)-MS that has been specifically designed for high-speed analysis during the short transient corresponding to the individual cell event. The detector provides for well-resolved atomic fingerprints of many elemental and isotopic tags, with little overlap of neighboring signals (high abundance sensitivity) and wide dynamic range both for a single antigen and between antigens.


Analytical Chemistry | 2010

Synthesis of a functional metal-chelating polymer and steps toward quantitative mass cytometry bioassays.

Daniel Majonis; Isaac Herrera; Olga Ornatsky; Maren Schulze; Xudong Lou; Mohsen Soleimani; Mark Nitz; Mitchell A. Winnik

We describe the synthesis and characterization of metal-chelating polymers with a degree of polymerization of 67 and 79, high diethylenetriaminepentaacetic acid (DTPA) functionality, M(w)/M(n) ≤ 1.17, and a maleimide as an orthogonal functional group for conjugation to antibodies. The polymeric disulfide form of the DP(n) = 79 DTPA polymer was analyzed by thermogravimetric analysis to determine moisture and sodium-ion content and by isothermal titration calorimetry (ITC) to determine the Gd(3+) binding capacity. These results showed each chain binds 68 ± 7 Gd(3+) per chain. Secondary goat antimouse IgG was covalently labeled with the maleimide form of the DTPA polymer (DP(n) = 79) carrying (159)Tb. Conventional ICPMS analysis of this conjugate showed each antibody carried an average of 161 ± 4 (159)Tb atoms. This result was combined with the ITC result to show there are an average of 2.4 ± 0.3 polymer chains attached to each antibody. Eleven monoclonal primary antibodies were labeled with different lanthanide isotopes using the same labeling methodology. Single cell analysis of whole umbilical cord blood stained with a mixture of 11 metal-tagged antibodies was performed by mass cytometry.


Journal of the American Chemical Society | 2009

Lanthanide-containing polymer microspheres by multiple-stage dispersion polymerization for highly multiplexed bioassays

Ahmed I. Abdelrahman; Sheng Dai; Stuart C. Thickett; Olga Ornatsky; Dmitry Bandura; Vladimir Baranov; Mitchell A. Winnik

We describe the synthesis and characterization of metal-encoded polystyrene microspheres by multiple-stage dispersion polymerization with diameters on the order of 2 mum and a very narrow size distribution. Different lanthanides were loaded into these microspheres through the addition of a mixture of lanthanide salts (LnCl(3)) and excess acrylic acid (AA) or acetoacetylethyl methacrylate (AAEM) dissolved in ethanol to the reaction after about 10% conversion of styrene, that is, well after the particle nucleation stage was complete. Individual microspheres contain ca. 10(6)-10(8) chelated lanthanide ions, of either a single element or a mixture of elements. These microspheres were characterized one-by-one utilizing a novel mass cytometer with an inductively coupled plasma (ICP) ionization source and time-of-flight (TOF) mass spectrometry detection. Microspheres containing a range of different metals at different levels of concentration were synthesized to meet the requirements of binary encoding and enumeration encoding protocols. With four different metals at five levels of concentration, we could achieve a variability of 624, and the strategy we report should allow one to obtain much larger variability. To demonstrate the usefulness of element-encoded beads for highly multiplexed immunoassays, we carried out a proof-of-principle model bioassay involving conjugation of mouse IgG to the surface of La and Tm containing particles and its detection by an antimouse IgG bearing a metal-chelating polymer with Pr.


Cancer Immunology, Immunotherapy | 2013

An introduction to mass cytometry: fundamentals and applications.

Scott D. Tanner; Vladimir Baranov; Olga Ornatsky; Dmitry Bandura; Thaddeus C. George

Mass cytometry addresses the analytical challenges of polychromatic flow cytometry by using metal atoms as tags rather than fluorophores and atomic mass spectrometry as the detector rather than photon optics. The many available enriched stable isotopes of the transition elements can provide up to 100 distinguishable reporting tags, which can be measured simultaneously because of the essential independence of detection provided by the mass spectrometer. We discuss the adaptation of traditional inductively coupled plasma mass spectrometry to cytometry applications. We focus on the generation of cytometry-compatible data and on approaches to unsupervised multivariate clustering analysis. Finally, we provide a high-level review of some recent benchmark reports that highlight the potential for massively multi-parameter mass cytometry.


Journal of Immunological Methods | 2008

Element-tagged immunoassay with ICP-MS detection : Evaluation and comparison to conventional immunoassays

Eva Razumienko; Olga Ornatsky; Robert Kinach; Michael Milyavsky; Eric R. Lechman; Vladimir Baranov; Mitchell A. Winnik; Scott D. Tanner

We have investigated the possibility of using element-tagged antibodies for protein detection and quantification in microplate format using Inductively Coupled Plasma Mass Spectrometry (ICP-MS), and compared the results to conventional immunoassays, such as Enzyme-Linked Immunosorbent Assay (ELISA) and Western blotting. The technique was further employed to detect low levels and measure DNA-binding activity of transcription factor p53 in leukemia cell lysates through its interaction with immobilized oligonucleotides and recognition by element-tagged antibodies. The advantages of ICP-MS detection for routine performance of immunoassays include increased sensitivity, wide dynamic range, minimal interference from complex matrices, and high throughput. Our approach advances the ICP-MS technology and demonstrates its applicability to proteomic studies through the use of antibodies directly labeled with polymer tags bearing multiple atoms of lanthanides. Development of this novel methodology will enable fast and quantitative identification of multiple analytes in a single well.

Collaboration


Dive into the Olga Ornatsky's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Nitz

University of Toronto

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qing Chang

Ontario Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David W. Hedley

Princess Margaret Cancer Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge