Olga Vinnere Pettersson
Swedish University of Agricultural Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Olga Vinnere Pettersson.
European Journal of Plant Pathology | 2010
Phuong Thi Hang Nguyen; Olga Vinnere Pettersson; Peter Olsson; Erland Liljeroth
Twenty-three isolates of Colletotrichum gloeosporioides, five isolates of C. acutatum, two isolates of C. capsici and six isolates of C. boninense associated with anthracnose disease on coffee (Coffea spp.) in Vietnam were identified based on morphology and DNA analysis. Phylogenetic analysis of DNA sequences from the internal transcribed spacer region of nuclear rDNA and a portion of mitochondrial small subunit rRNA were concordant and allowed good separation of the taxa. We found several Colletotrichum isolates of unknown species and their taxonomic position remains unresolved. The majority of Vietnamese isolates belonged to C. gloeosporioides and they grouped together with the coffee berry disease (CBD) fungus, C. kahawae. However, C. kahawae could be distinguished from the Vietnamese C. gloeosporioides isolates based on ammonium tartrate utilization, growth rate and pathogenicity. C. gloeosporioides isolates were more pathogenic on detached green berries than isolates of the other species, i.e. C. acutatum, C capsici and C. boninense. Some of the C. gloeosporioides isolates produced slightly sunken lesions on green berries resembling CBD symptoms but it did not destroy the bean. We did not find any evidence of the presence of C. kahawae in Vietnam.
PLOS ONE | 2013
Ievgeniia Tiukova; Mats E. Petterson; Christian Tellgren-Roth; Ignas Bunikis; Thomas Eberhard; Olga Vinnere Pettersson; Volkmar Passoth
Dekkera bruxellensis can outcompete Saccharomyces cerevisiae in environments with low sugar concentrations. It is usually regarded as a spoilage yeast but has lately been identified as an alternative ethanol production organism. In this study, global gene expression in the industrial isolate D. bruxellensis CBS 11270 under oxygen and glucose limitation was investigated by whole transcriptome sequencing using the AB SOLiD technology. Among other observations, we noted expression of respiratory complex I NADH-ubiquinone reductase although D. bruxellensis is a Crabtree positive yeast. The observed higher expression of NADH-generating enzymes compared to NAD+-generating enzymes might be the reason for the previously observed NADH imbalance and resulting Custer effect in D. bruxellensis. Low expression of genes involved in glycerol production is probably the molecular basis for high efficiency of D. bruxellensis metabolism under nutrient limitation. No D. bruxellensis homologs to the genes involved in the final reactions of glycerol biosynthesis were detected. A high number of expressed sugar transporter genes is consistent with the hypothesis that the competitiveness of D. bruxellensis is due to a higher affinity for the limiting substrate.
IMA Fungus | 2013
John I. Pitt; Henrik Lantz; Olga Vinnere Pettersson; Su-lin L. Leong
On the basis of a study of ITS sequences, Vidal et al. (Rev. Iber. Micol. 17: 22, 2000) recommended that the genus Chrysosporium be restricted to species belonging to Onygenales. Using nrLSU genes, we studied the majority of clades examined by Vidal et al. and showed that currently accepted species in Chrysosporium phylogenetically belong in six clades in three orders. Surprisingly, the xerophilic species of Chrysosporium, long thought to be a single grouping away from the majority of Chrysosporium species, occupy two clades, one in Leotiales, the other in Eurotiales. Species accepted in Leotiales are related to the sexual genus Bettsia. One is the type species B. alvei, and related asexual strains classified as C. farinicola, the second is C. fastidium transferred to Bettsia as B. fastidia. Species in the Eurotiales are transferred to Xerochrysium gen. nov., where the accepted species are X. xerophilum and X. dermatitidis, the correct name for C. inops on transfer to Xerochrysium. All accepted species are extreme xerophiles, found in dried and concentrated foods.
BMC Genomics | 2010
Eva C. Berglund; Christian Ehrenborg; Olga Vinnere Pettersson; Fredrik Granberg; Kristina Näslund; Martin Holmberg; Siv G. E. Andersson
BackgroundRodents represent a high-risk reservoir for the emergence of new human pathogens. The recent completion of the 2.3 Mb genome of Bartonella grahamii, one of the most prevalent blood-borne bacteria in wild rodents, revealed a higher abundance of genes for host-cell interaction systems than in the genomes of closely related human pathogens. The sequence variability within the global B. grahamii population was recently investigated by multi locus sequence typing, but no study on the variability of putative host-cell interaction systems has been performed.ResultsTo study the population dynamics of B. grahamii, we analyzed the genomic diversity on a whole-genome scale of 27 B. grahamii strains isolated from four different species of wild rodents in three geographic locations separated by less than 30 km. Even using highly variable spacer regions, only 3 sequence types were identified. This low sequence diversity contrasted with a high variability in genome content. Microarray comparative genome hybridizations identified genes for outer surface proteins, including a repeated region containing the fha gene for filamentous hemaggluttinin and a plasmid that encodes a type IV secretion system, as the most variable. The estimated generation times in liquid culture medium for a subset of strains ranged from 5 to 22 hours, but did not correlate with sequence type or presence/absence patterns of the fha gene or the plasmid.ConclusionOur study has revealed a geographic microstructure of B. grahamii in wild rodents. Despite near-identity in nucleotide sequence, major differences were observed in gene presence/absence patterns that did not segregate with host species. This suggests that genetically similar strains can infect a range of different hosts.
GigaScience | 2015
Ignas Bunikis; Ievgeniia Tiukova; Kicki Holmberg; Britta Lötstedt; Olga Vinnere Pettersson; Volkmar Passoth; Max Käller; Francesco Vezzi
BackgroundIt remains a challenge to perform de novo assembly using next-generation sequencing (NGS). Despite the availability of multiple sequencing technologies and tools (e.g., assemblers) it is still difficult to assemble new genomes at chromosome resolution (i.e., one sequence per chromosome). Obtaining high quality draft assemblies is extremely important in the case of yeast genomes to better characterise major events in their evolutionary history. The aim of this work is two-fold: on the one hand we want to show how combining different and somewhat complementary technologies is key to improving assembly quality and correctness, and on the other hand we present a de novo assembly pipeline we believe to be beneficial to core facility bioinformaticians. To demonstrate both the effectiveness of combining technologies and the simplicity of the pipeline, here we present the results obtained using the Dekkera bruxellensis genome.MethodsIn this work we used short-read Illumina data and long-read PacBio data combined with the extreme long-range information from OpGen optical maps in the task of de novo genome assembly and finishing. Moreover, we developed NouGAT, a semi-automated pipeline for read-preprocessing, de novo assembly and assembly evaluation, which was instrumental for this work.ResultsWe obtained a high quality draft assembly of a yeast genome, resolved on a chromosomal level. Furthermore, this assembly was corrected for mis-assembly errors as demonstrated by resolving a large collapsed repeat and by receiving higher scores by assembly evaluation tools. With the inclusion of PacBio data we were able to fill about 5 % of the optical mapped genome not covered by the Illumina data.
bioRxiv | 2018
Tomas Klingström; Erik Bongcam-Rudloff; Olga Vinnere Pettersson
For long-read sequencing applications, shearing of DNA is a significant issue as it limits the read-lengths generated by sequencing. During extraction and storage of DNA the DNA polymers are susceptible to physical and chemical shearing. In particular, the mechanisms of physical shearing are poorly understood in most laboratories as they are of little relevance to commonly used short-read sequencing technologies. This study draws upon lessons learned in a diverse set of research fields to create a comprehensive theoretical framework for obtaining high molecular weight DNA (HMW-DNA) to support improved quality management in laboratories and biobanks for long-read sequencing applications. Under common laboratory conditions physical and chemical shearing yields DNA fragments of 5-35 kilobases (kb) in length. This fragment length is sufficient for DNA sequencing using short-read technologies but for Nanopore sequencing, linked reads and single molecular real time sequencing (SMRT) poorly preserved DNA will limit the length of the reads generated. The shearing process can be divided into physical and chemical shearing which generates different patterns of fragmentation. Exposure to physical shearing creates a characteristic fragment length where the main cause of shearing is shear stress induced by turbulence. The characteristic fragment length is several thousand base pairs longer than the reads produced by short-read sequencing as the shear stress imposed on short DNA fragments is insufficient to shear the DNA. This characteristic length can be measured using gel electrophoresis or instruments for DNA fragment analysis,. Chemical shearing generates randomly distributed fragment lengths visible as a smear of DNA below the peak fragment length. By measuring the peak of the DNA fragment length distribution and the proportion of very short DNA fragments, both sources of shearing can be measured using commonly used laboratory techniques, providing a suitable quantification of DNA integrity of DNA for sequencing with long-read technologies.
bioRxiv | 2018
Andreas Wallberg; Ignas Bunikis; Olga Vinnere Pettersson; Mai-Britt Mosbech; Anna K Childers; Jay D. Evans; Alexander S. Mikheyev; Hugh M. Robertson; Gene E. Robinson; Matthew T. Webster
Background The ability to generate long sequencing reads and access long-range linkage information is revolutionizing the quality and completeness of genome assemblies. Here we use a hybrid approach that combines data from four genome sequencing and mapping technologies to generate a new genome assembly of the honeybee Apis mellifera. We first generated contigs based on PacBio sequencing libraries, which were then merged with linked-read 10x Chromium data followed by scaffolding using a BioNano optical genome map and a Hi-C chromatin interaction map, complemented by a genetic linkage map. Results Each of the assembly steps reduced the number of gaps and incorporated a substantial amount of additional sequence into scaffolds. The new assembly (Amel_HAv3) is significantly more contiguous and complete than the previous one (Amel_4.5), based mainly on Sanger sequencing reads. N50 of contigs is 120-fold higher (5.381 Mbp compared to 0.053 Mbp) and we anchor >98% of the sequence to chromosomes. All of the 16 chromosomes are represented as single scaffolds with an average of three sequence gaps per chromosome. The improvements are largely due to the inclusion of repetitive sequence that was unplaced in previous assemblies. In particular, our assembly is highly contiguous across centromeres and telomeres and includes hundreds of AvaI and AluI repeats associated with these features. Conclusions The improved assembly will be of utility for refining gene models, studying genome function, mapping functional genetic variation, identification of structural variants, and comparative genomics.
F1000Research | 2018
Victoria Dominguez del Angel; Erik Hjerde; Lieven Sterck; Salvadors Capella-Gutierrez; Cederic Notredame; Olga Vinnere Pettersson; Joelle Amselem; Laurent Bouri; Stéphanie Bocs; Christophe Klopp; Jean-François Gibrat; Anna Vlasova; Brane Leskošek; Lucile Soler; Mahesh Binzer-Panchal; Henrik Lantz
As a part of the ELIXIR-EXCELERATE efforts in capacity building, we present here 10 steps to facilitate researchers getting started in genome assembly and genome annotation. The guidelines given are broadly applicable, intended to be stable over time, and cover all aspects from start to finish of a general assembly and annotation project. Intrinsic properties of genomes are discussed, as is the importance of using high quality DNA. Different sequencing technologies and generally applicable workflows for genome assembly are also detailed. We cover structural and functional annotation and encourage readers to also annotate transposable elements, something that is often omitted from annotation workflows. The importance of data management is stressed, and we give advice on where to submit data and how to make your results Findable, Accessible, Interoperable, and Reusable (FAIR).
bioRxiv | 2017
Anders E. Lind; Joran Martijn; Ian Spiertz; Lina Juzokaite; Ignas Bunikis; Olga Vinnere Pettersson; Thijs J. G. Ettema
Amplicon sequencing of the 16S rRNA gene is the predominant method to quantify microbial compositions of environmental samples and to discover previously unknown lineages. Its unique structure of interspersed conserved and variable regions is an excellent target for PCR and allows for classification of reads at all taxonomic levels. However, the relatively few phylogenetically informative sites prevent confident phylogenetic placements of novel lineages that are deep branching relative to reference taxa. This problem is exacerbated when only short 16S rRNA gene fragments are sequenced. To resolve their placement, it is common practice to gather more informative sites by combining multiple conserved genes into concatenated datasets. This however requires genomic data which may be obtained through relatively expensive metagenome sequencing and computationally demanding analyses. Here we develop a protocol that amplifies a large part of 16S and 23S rRNA genes within the rRNA operon, including the ITS region, and sequences the amplicons with PacBio long-read technology. We tested our method with a synthetic mock community and developed a read curation pipeline that reduces the overall error rate to 0.18%. Applying our method on four diverse environmental samples, we were able to capture near full-length rRNA operon amplicons from a large diversity of prokaryotes. Phylogenetic trees constructed with these sequences showed an increase in statistical support compared to trees inferred with shorter, Illumina-like sequences using only the 16S rRNA gene (250 bp). Our method is a cost-effective solution to generate high quality, near full-length 16S and 23S rRNA gene sequences from environmental prokaryotes.
International Journal of Food Microbiology | 2011
Su-lin L. Leong; Olga Vinnere Pettersson; Therese Rice; Ailsa D. Hocking; Johan Schnürer