Olga Yu. Pletjushkina
Moscow State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Olga Yu. Pletjushkina.
Molecular and Cellular Biochemistry | 2004
Vladimir P. Skulachev; L. E. Bakeeva; Boris V. Chernyak; Domnina Lv; Alexander A. Minin; Olga Yu. Pletjushkina; V. B. Saprunova; Innokenty V. Skulachev; Valeria G. Tsyplenkova; Jury M. Vasiliev; L. S. Yaguzhinsky; Dmitry B. Zorov
Association of mitochondrial population to a mitochondrial reticulum is typical of many types of the healthy cells. This allows the cell to organize a united intracellular power-transmitting system. However, such an association can create some difficulties for the cell when a part of the reticulum is damaged or when mitochondria should migrate from one cell region to another. It is shown that in these cases decomposition of extended mitochondria to small roundish organelles takes place (the thread-grain transition). As an intermediate step of this process, formation of bead-like mitochondria occurs when several swollen parts of the mitochondrial filament are interconnected with thin thread-like mitochondrial structures. A hypothesis is put forward that the thread-grain transition is used as a mechanism to isolate a damaged part of the mitochondrial system from its intact parts. If the injury is not repaired, spherical mitochondrion originated from the damaged part of the reticulum is assumed to convert to a small ultracondensed and presumably dead mitochondrion (this process is called ‘mitoptosis’). Then the dead mitochondrion is engulfed by an autophagosome. Sometimes, an ultracondensed mitoplast co-exists with a normal mitoplast, both of them being surrounded by a common outer mitochondrial membrane. During apoptosis, massive thread-grain transition is observed which, according to Youle et al. (S. Frank et al., Dev Cell 1: 515, 2002), is mediated by a dynamin-related protein and represents an obligatory step of the mitochondria-mediated apoptosis. We found that there is a lag phase between addition of an apoptogenic agent and the thread-grain transition. When started, the transition occurs very fast. It is also found that this event precedes complete de-energization of mitochondria and cytochrome c release to cytosol. When formed, small mitochondria migrate to (and in certain rare cases even into) the nucleus. It is suggested that small mitochondria may serve as a transportable form of organelles (‘cargo boats’ transporting some apoptotic proteins to their nuclear targets).
Oncogene | 2002
Liarisa A. Shchepina; Olga Yu. Pletjushkina; Armine V. Avetisyan; Liora E. Bakeeva; Fetisova Ek; Denis S. Izyumov; V. B. Saprunova; Mikhail Yu. Vyssokikh; Boris V. Chernyak; Vladimir P. Skulachev
The release of cytochrome c from the intermembrane space of mitochondria into the cytosol is one of the critical events in apoptotic cell death. In the present study, it is shown that release of cytochrome c and apoptosis induced by tumor necrosis factor α (TNF) in HeLa cells can be inhibited by (i) overexpression of an oncoprotein Bcl-2, (ii) Cyclosporin A, an inhibitor of the mitochondrial permeability transition pore (PTP) or (iii) oligomycin, an inhibitor of H+- ATP-synthase. Staurosporine-induced apoptosis is sensitive to Bcl-2 but insensitive to Cyclosporin A and oligomycin. The effect of oligomycin is not due to changes in mitochondrial membrane potential or to inhibition of ATP synthesis/hydrolysis since (a) uncouplers (CCCP, DNP) which discharge the membrane potential fail to abolish the protective action of oligomycin and (b) aurovertin B (another inhibitor of H+-ATP-synthase, affecting its F1 component) do not affect apoptosis. A role of oligomycin-sensitive F0 component of H+-ATP-synthase in the TNF-induced PTP opening and apoptosis is suggested.
Biochimica et Biophysica Acta | 2010
Vladimir P. Skulachev; Yury Nikolaevich Antonenko; Dmitry A. Cherepanov; Boris V. Chernyak; Denis S. Izyumov; Ludmila S. Khailova; Sergey S. Klishin; Galina A. Korshunova; Konstantin G. Lyamzaev; Olga Yu. Pletjushkina; Vitaly Roginsky; Tatiana I. Rokitskaya; Fedor F. Severin; Inna I. Severina; Ruben A. Simonyan; Maxim V. Skulachev; Natalia V. Sumbatyan; E. I. Sukhanova; Vadim N. Tashlitsky; T. A. Trendeleva; Mikhail Yu. Vyssokikh; R. A. Zvyagilskaya
The present state of the art in studies on the mechanisms of antioxidant activities of mitochondria-targeted cationic plastoquinone derivatives (SkQs) is reviewed. Our experiments showed that these compounds can operate as antioxidants in two quite different ways, i.e. (i) by preventing peroxidation of cardiolipin [Antonenko et al., Biochemistry (Moscow) 73 (2008) 1273-1287] and (ii) by fatty acid cycling resulting in mild uncoupling that inhibits the formation of reactive oxygen species (ROS) in mitochondrial State 4 [Severin et al. Proc. Natl. Acad. Sci. USA 107 (2009), 663-668]. The quinol and cationic moieties of SkQ are involved in cases (i) and (ii), respectively. In case (i) SkQH2 interrupts propagation of chain reactions involved in peroxidation of unsaturated fatty acid residues in cardiolipin, the formed SkQ- being reduced back to SkQH2 by heme bH of complex III in an antimycin-sensitive way. Molecular dynamics simulation showed that there are two stable conformations of SkQ1 with the quinol residue localized near peroxyl radicals at C9 or C13 of the linoleate residue in cardiolipin. In mechanism (ii), fatty acid cycling mediated by the cationic SkQ moiety is involved. It consists of (a) transmembrane movement of the fatty acid anion/SkQ cation pair and (b) back flows of free SkQ cation and protonated fatty acid. The cycling results in a protonophorous effect that was demonstrated in planar phospholipid membranes and liposomes. In mitochondria, the cycling gives rise to mild uncoupling, thereby decreasing membrane potential and ROS generation coupled to reverse electron transport in the respiratory chain. In yeast cells, dodecyltriphenylphosphonium (capital ES, Cyrillic12TPP), the cationic part of SkQ1, induces uncoupling that is mitochondria-targeted since capital ES, Cyrillic12TPP is specifically accumulated in mitochondria and increases the H+ conductance of their inner membrane. The conductance of the outer cell membrane is not affected by capital ES, Cyrillic12TPP.
Biochemical Society Transactions | 2004
Konstantin G. Lyamzaev; Olga Yu. Pletjushkina; V. B. Saprunova; L. E. Bakeeva; Boris V. Chernyak; Vladimir P. Skulachev
The inhibitors of oxidative phosphorylation induced fragmentation of mitochondria without any signs of apoptosis in CV-1 and HeLa cells. Prolonged treatment with the uncouplers (alone or in combination with the inhibitors of respiration) caused perinuclear clusterization of mitochondria, followed by their selective elimination. The fraction of mitochondria-depleted cells remained viable.
Biochemistry | 2010
Denis S. Izyumov; Domnina Lv; O. K. Nepryakhina; Armine V. Avetisyan; S. A. Golyshev; O. Y. Ivanova; M. V. Korotetskaya; Konstantin G. Lyamzaev; Olga Yu. Pletjushkina; E. N. Popova; Boris V. Chernyak
Production of reactive oxygen species (ROS) in mitochondria was studied using the novel mitochondria-targeted antioxidants (SkQ) in cultures of human cells. It was shown that SkQ rapidly (1–2 h) and selectively accumulated in mitochondria and prevented oxidation of mitochondrial components under oxidative stress induced by hydrogen peroxide. At nanomolar concentrations, SkQ inhibited oxidation of glutathione, fragmentation of mitochondria, and translocation of Bax from cytosol into mitochondria. The last effect could be related to prevention of conformational change in the adenine nucleotide transporter, which depends on oxidation of critical thiols. Mitochondria-targeted antioxidants at nanomolar concentrations prevented accumulation of ROS and cell death under oxidative stress. These effects required 24 h or more (depending on the cell type) preincubation, and this was not related to slow induction of endogenous antioxidant systems. It is suggested that SkQ slowly accumulates in a small subpopulation of mitochondria that have decreased membrane potential and produce the major part of ROS under oxidative stress. This population was visualized in the cells using potential-sensitive dye. The possible role of the small fraction of “bad” mitochondria in cell physiology is discussed.
Biochemistry | 2010
I.A. Demianenko; Tamara V. Vasilieva; Domnina Lv; Vera Dugina; M. V. Egorov; O. Y. Ivanova; O. P. Ilinskaya; Olga Yu. Pletjushkina; E. N. Popova; Ivan Yu. Sakharov; A. V. Fedorov; Boris V. Chernyak
It is shown that the novel mitochondria-targeted antioxidant SkQ1, (10-(6′-plastoquinonyl) decyltriphenylphosphonium) stimulates healing of full-thickness dermal wounds in mice and rats. Treatment with nanomolar doses of SkQ1 in various formulations accelerated wound cleaning and suppressed neutrophil infiltration at the early (7 h) steps of inflammatory phase. SkQ1 stimulated formation of granulation tissue and increased the content of myofibroblasts in the beginning of regenerative phase of wound healing. Later this effect caused accumulation of collagen fibers. Local treatment with SkQ1 stimulated re-epithelization of the wound. Lifelong treatment of mice with SkQ1 supplemented with drinking water strongly stimulated skin wounds healing in old (28 months) animals. In an in vitro model of wound in human cell cultures, SkQ1 stimulated movement of epitheliocytes and fibroblasts into the “wound”. Myofibroblast differentiation of subcutaneous fibroblasts was stimulated by SkQ1. It is suggested that SkQ1 stimulates wound healing by suppression of the negative effects of oxidative stress in the wound and also by induction of differentiation. Restoration of regenerative processes in old animals is consistent with the “rejuvenation” effects of SkQ1, which prevents some gerontological diseases.
Antioxidants & Redox Signaling | 2010
E. N. Popova; Olga Yu. Pletjushkina; Vera Dugina; Domnina Lv; O. Y. Ivanova; Denis S. Izyumov; Vladimir P. Skulachev; Boris V. Chernyak
The goal of this study was to investigate the possible role of reactive oxygen species (ROS) in signaling, in modulation of the cytoskeleton, and in differentiation of fibroblasts. For this purpose, we have applied a novel mitochondria-targeted antioxidant: plastoquinone conjugated with decyltriphenylphosphonium (SkQ1). This antioxidant at nanomolar concentration prevented ROS accumulation and cell death induced by H(2)O(2) in fibroblasts. We found that scavenging of ROS produced by mitochondria activated the Rho/ROCK/LIMK signaling pathway that was followed by phosphorylation of cofilin and stabilization of actin stress fibers. The mitochondria-targeted antioxidant induced differentiation of human subcutaneous fibroblasts to myofibroblasts as revealed by expression of fibronectin isoform (EDA-FN) and smooth muscle actin (α-SMA). This effect was shown to be mediated by transforming growth factor β1 (TGFβ1), which was activated by matrix metalloprotease 9 (MMP9) in the culture medium. Scavenging of ROS stimulated secretion of MMP9 rather than its processing. The same effect was achieved by the nontargeted antioxidant Trolox at higher concentration, but the thiol antioxidant N-acetylcysteine (NAC) inhibited MMP activity and was not able to induce myofibroblast differentiation. The myofibroblast phenotype was supported due to autocrine TGFβ1-dependent stimulation after removal of SkQ1. It is concluded that ROS scavenging in mitochondria induces TGFβ1-dependent myofibroblast differentiation.
Cell Biology International | 2004
Domnina Lv; O. Y. Ivanova; Olga Yu. Pletjushkina; Fetisova Ek; Boris V. Chernyak; Vladimir P. Skulachev; Jury M. Vasiliev
Dynamics of alterations of cell surface topography during TNF‐induced apoptosis of HeLa cells was examined by phase‐contrast videomicroscopy and immunomorphological analysis. The final stage of apoptosis accompanied by cell rounding and general blebbing of the cell surface became after 4–6 h of incubation but much earlier, after 1.5–3 h, essentially flattened lamellipodia at the active edges transformed into the small blebs that were continuously extended and retracted during the next 1–2 h. This phenomenon was called “marginal blebbing”. It took place before the cytochrome c release from mitochondria to cytosol. Marginal blebbing was inhibited by drugs that depolymerized actin microfilaments (cytochalasin, latrunculin) or decreased Rho‐kinase‐dependent contractility of actin—myosin cortex (H7, HA‐1077, Y27632). A pancaspase inhibitor, zVAD‐fmk, completely prevented marginal and general blebbing, and TNF‐induced apoptosis. DEVD‐fmk, a specific inhibitor of caspase‐3, inhibited both marginal and general blebbing but not cell rounding and death. Thus, marginal blebbing is an early microfilament‐dependent apoptotic event. It is suggested that it is initiated by minimal activation of caspase‐3 and the following local Rho‐kinase‐dependent stimulation of actin—myosin cortex contractility. Localization of marginal blebs at the active edge may be associated with special organization of cortex in that zone.
Biochimica et Biophysica Acta | 2017
Vlada V. Zakharova; Olga Yu. Pletjushkina; I. I. Galkin; R. A. Zinovkin; Boris V. Chernyak; Dmitri V. Krysko; Claus Bachert; Olga Krysko; Vladimir P. Skulachev; E. N. Popova
Mitochondrial dysfunctions occur in many diseases linked to the systemic inflammatory response syndrome (SIRS). Mild uncoupling of oxidative phosphorylation is known to rescue model animals from pathologies related to mitochondrial dysfunctions and overproduction of reactive oxygen species (ROS). To study the potential of SIRS therapy by uncoupling, we tested protonophore dinitrophenol (DNP) and a free fatty acid (FFA) anion carrier, lipophilic cation dodecyltriphenylphosphonium (C12TPP) in mice and in vitro models of SIRS. DNP and C12TPP prevented the body temperature drop and lethality in mice injected with high doses of a SIRS inducer, tumor necrosis factor (TNF). The mitochondria-targeted antioxidant plastoquinonyl decyltriphenylphosphonium (SkQ1) which also catalyzes FFA-dependent uncoupling revealed similar protective effects and downregulated expression of the NFκB-regulated genes (VCAM1, ICAM1, MCP1, and IL-6) involved in the inflammatory response of endothelium in aortas of the TNF-treated mice. In vitro mild uncoupling rescued from TNF-induced endothelial permeability, disassembly of cell contacts and VE-cadherin cleavage by the matrix metalloprotease 9 (ММР9). The uncouplers prevented TNF-induced expression of MMP9 via inhibition of NFκB signaling. Water-soluble antioxidant Trolox also prevented TNF-induced activation and permeability of endothelium in vitro via inhibition of NFκB signaling, suggesting that the protective action of the uncouplers is linked to their antioxidant potential.
Journal of Cellular Physiology | 2017
Vlada V. Zakharova; Olga Yu. Pletjushkina; R. A. Zinovkin; E. N. Popova; Boris V. Chernyak
Systemic inflammatory response syndrome (SIRS) development is accompanied by mitochondrial dysfunction and excessive ROS production. Mitochondrial dysfunctions also occur in many SIRS‐related diseases and may be critical for their pathogenesis; therefore, a use of mitochondria‐targeted drugs is a promising trend in SIRS research and therapy. Here, we review recent studies concerning the application of the mitochondria‐targeted antioxidants and uncouplers of oxidative phosphorylation in animal models of SIRS and related diseases. We propose that a new class of uncouplers of oxidative phosphorylation, lipophilic cations could be a base for a new generation of drugs for SIRS treatment. J. Cell. Physiol. 232: 904–912, 2017.