Olga Yurieva
Howard Hughes Medical Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Olga Yurieva.
Cell | 2008
Roxana E. Georgescu; Seung-Sup Kim; Olga Yurieva; John Kuriyan; Xiang-Peng Kong; Mike O'Donnell
The structure of the E. coli beta clamp polymerase processivity factor has been solved in complex with primed DNA. Interestingly, the clamp directly binds the DNA duplex and also forms a crystal contact with the ssDNA template strand, which binds into the protein-binding pocket of the clamp. We demonstrate that these clamp-DNA interactions function in clamp loading, perhaps by inducing the ring to close around DNA. Clamp binding to template ssDNA may also serve to hold the clamp at a primed site after loading or during switching of multiple factors on the clamp. Remarkably, the DNA is highly tilted as it passes through the beta ring. The pronounced 22 degrees angle of DNA through beta may enable DNA to switch between multiple factors bound to a single clamp simply by alternating from one protomer of the ring to the other.
Nature Structural & Molecular Biology | 2014
Roxana E. Georgescu; Lance D. Langston; Nina Y. Yao; Olga Yurieva; Dan Zhang; Jeff Finkelstein; Tani Agarwal; Mike O'Donnell
Eukaryotes use distinct polymerases for leading- and lagging-strand replication, but how they target their respective strands is uncertain. We reconstituted Saccharomyces cerevisiae replication forks and found that CMG helicase selects polymerase (Pol) ɛ to the exclusion of Pol δ on the leading strand. Even if Pol δ assembles on the leading strand, Pol ɛ rapidly replaces it. Pol δ–PCNA is distributive with CMG, in contrast to its high stability on primed ssDNA. Hence CMG will not stabilize Pol δ, instead leaving the leading strand accessible for Pol ɛ and stabilizing Pol ɛ. Comparison of Pol ɛ and Pol δ on a lagging-strand model DNA reveals the opposite. Pol δ dominates over excess Pol ɛ on PCNA-primed ssDNA. Thus, PCNA strongly favors Pol δ over Pol ɛ on the lagging strand, but CMG over-rides and flips this balance in favor of Pol ɛ on the leading strand.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Lance D. Langston; Olga Yurieva; Myron F. Goodman; Mike O'Donnell
All cells contain specialized translesion DNA polymerases that replicate past sites of DNA damage. We find that Escherichia coli translesion DNA polymerase II (Pol II) and polymerase IV (Pol IV) function with DnaB helicase and regulate its rate of unwinding, slowing it to as little as 1 bp/s. Furthermore, Pol II and Pol IV freely exchange with the polymerase III (Pol III) replicase on the β-clamp and function with DnaB helicase to form alternative replisomes, even before Pol III stalls at a lesion. DNA damage-induced levels of Pol II and Pol IV dominate the clamp, slowing the helicase and stably maintaining the architecture of the replication machinery while keeping the fork moving. We propose that these dynamic actions provide additional time for normal excision repair of lesions before the replication fork reaches them and also enable the appropriate translesion polymerase to sample each lesion as it is encountered.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Lance D. Langston; Dan Zhang; Olga Yurieva; Roxana E. Georgescu; Jeff Finkelstein; Nina Y. Yao; Mike O’Donnell
Significance All cells must replicate their chromosomes prior to cell division. This process is carried out by a collection of proteins, known as the replisome, that act together to unwind the double helix and synthesize two new DNA strands complementary to the two parental strands. The details of replisome function have been worked out for bacteria but are much less well understood for eukaryotic cells. We have developed a system for studying eukaryotic replisome function in vitro using purified proteins. Using this system, we have identified a direct interaction between the component that unwinds the DNA, the CMG (Cdc45-MCM-GINS) helicase, and the component that replicates the leading strand, DNA polymerase ε, to form a large helicase–polymerase holoenzyme comprising 15 separate proteins. DNA replication in eukaryotes is asymmetric, with separate DNA polymerases (Pol) dedicated to bulk synthesis of the leading and lagging strands. Pol α/primase initiates primers on both strands that are extended by Pol ε on the leading strand and by Pol δ on the lagging strand. The CMG (Cdc45-MCM-GINS) helicase surrounds the leading strand and is proposed to recruit Pol ε for leading-strand synthesis, but to date a direct interaction between CMG and Pol ε has not been demonstrated. While purifying CMG helicase overexpressed in yeast, we detected a functional complex between CMG and native Pol ε. Using pure CMG and Pol ε, we reconstituted a stable 15-subunit CMG–Pol ε complex and showed that it is a functional polymerase–helicase on a model replication fork in vitro. On its own, the Pol2 catalytic subunit of Pol ε is inefficient in CMG-dependent replication, but addition of the Dpb2 protein subunit of Pol ε, known to bind the Psf1 protein subunit of CMG, allows stable synthesis with CMG. Dpb2 does not affect Pol δ function with CMG, and thus we propose that the connection between Dpb2 and CMG helps to stabilize Pol ε on the leading strand as part of a 15-subunit leading-strand holoenzyme we refer to as CMGE. Direct binding between Pol ε and CMG provides an explanation for specific targeting of Pol ε to the leading strand and provides clear mechanistic evidence for how strand asymmetry is maintained in eukaryotes.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Roxana E. Georgescu; Olga Yurieva; Seung-Sup Kim; John Kuriyan; Xiang-Peng Kong; Mike O'Donnell
DNA polymerases attach to the DNA sliding clamp through a common overlapping binding site. We identify a small-molecule compound that binds the protein-binding site in the Escherichia coli β-clamp and differentially affects the activity of DNA polymerases II, III, and IV. To understand the molecular basis of this discrimination, the cocrystal structure of the chemical inhibitor is solved in complex with β and is compared with the structures of Pol II, Pol III, and Pol IV peptides bound to β. The analysis reveals that the small molecule localizes in a region of the clamp to which the DNA polymerases attach in different ways. The results suggest that the small molecule may be useful in the future to probe polymerase function with β, and that the β-clamp may represent an antibiotic target.
eLife | 2015
Roxana E. Georgescu; Grant D Schauer; Nina Y. Yao; Lance D. Langston; Olga Yurieva; Dan Zhang; Jeff Finkelstein; Mike O'Donnell
We have reconstituted a eukaryotic leading/lagging strand replisome comprising 31 distinct polypeptides. This study identifies a process unprecedented in bacterial replisomes. While bacteria and phage simply recruit polymerases to the fork, we find that suppression mechanisms are used to position the distinct eukaryotic polymerases on their respective strands. Hence, Pol ε is active with CMG on the leading strand, but it is unable to function on the lagging strand, even when Pol δ is not present. Conversely, Pol δ-PCNA is the only enzyme capable of extending Okazaki fragments in the presence of Pols ε and α. We have shown earlier that Pol δ-PCNA is suppressed on the leading strand with CMG (Georgescu et al., 2014). We propose that CMG, the 11-subunit helicase, is responsible for one or both of these suppression mechanisms that spatially control polymerase occupancy at the fork. DOI: http://dx.doi.org/10.7554/eLife.04988.001
Proceedings of the National Academy of Sciences of the United States of America | 2013
Nina Y. Yao; Jeremy W. Schroeder; Olga Yurieva; Lyle A. Simmons; Mike O'Donnell
The concentration of ribonucleoside triphosphates (rNTPs) in cells is far greater than the concentration of deoxyribonucleoside triphosphates (dNTPs), and this pool imbalance presents a challenge for DNA polymerases (Pols) to select their proper substrate. This report examines the effect of nucleotide pool imbalance on the rate and fidelity of the Escherichia coli replisome. We find that rNTPs decrease replication fork rate by competing with dNTPs at the active site of the C-family Pol III replicase at a step that does not require correct base-pairing. The effect of rNTPs on Pol rate generalizes to B-family eukaryotic replicases, Pols δ and ε. Imbalance of the dNTP pool also slows the replisome and thus is not specific to rNTPs. We observe a measurable frequency of rNMP incorporation that predicts one rNTP incorporated every 2.3 kb during chromosome replication. Given the frequency of rNMP incorporation, the repair of rNMPs is likely rapid. RNase HII nicks DNA at single rNMP residues to initiate replacement with dNMP. Considering that rNMPs will mark the new strand, RNase HII may direct strand-specificity for mismatch repair (MMR). How the newly synthesized strand is recognized for MMR is uncertain in eukaryotes and most bacteria, which lack a methyl-directed nicking system. Here we demonstrate that Bacillus subtilis incorporates rNMPs in vivo, that RNase HII plays a role in their removal, and the RNase HII gene deletion enhances mutagenesis, suggesting a possible role of incorporated rNMPs in MMR.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Roxana E. Georgescu; Zuanning Yuan; Lin Bai; Ruda de Luna Almeida Santos; Jingchuan Sun; Dan Zhang; Olga Yurieva; Huilin Li; Mike O’Donnell
Significance All cellular life forms use a ring-shaped hexameric helicase during DNA replication. CMG (Cdc45, Mcm2–7, GINS) is the eukaryotic replicative helicase. CMG contains the ring-shaped hexameric Mcm2–7 that harbors the helicase motors. CMG is known to bind many other proteins, including a leading and lagging polymerase and primase. Thus, the threading of DNA through the CMG helicase at a replication fork determines the orientation of the associated polymerases at the replication fork, an important structural feature with many consequences that may direct future experimentation. This report uses cryo-EM single-particle reconstruction to image CMG that motored to a block site at a forked junction, enabling direct visualization of DNA threading through CMG. The eukaryotic CMG (Cdc45, Mcm2–7, GINS) helicase consists of the Mcm2–7 hexameric ring along with five accessory factors. The Mcm2–7 heterohexamer, like other hexameric helicases, is shaped like a ring with two tiers, an N-tier ring composed of the N-terminal domains, and a C-tier of C-terminal domains; the C-tier contains the motor. In principle, either tier could translocate ahead of the other during movement on DNA. We have used cryo-EM single-particle 3D reconstruction to solve the structure of CMG in complex with a DNA fork. The duplex stem penetrates into the central channel of the N-tier and the unwound leading single-strand DNA traverses the channel through the N-tier into the C-tier motor, 5′-3′ through CMG. Therefore, the N-tier ring is pushed ahead by the C-tier ring during CMG translocation, opposite the currently accepted polarity. The polarity of the N-tier ahead of the C-tier places the leading Pol ε below CMG and Pol α-primase at the top of CMG at the replication fork. Surprisingly, the new N-tier to C-tier polarity of translocation reveals an unforeseen quality-control mechanism at the origin. Thus, upon assembly of head-to-head CMGs that encircle double-stranded DNA at the origin, the two CMGs must pass one another to leave the origin and both must remodel onto opposite strands of single-stranded DNA to do so. We propose that head-to-head motors may generate energy that underlies initial melting at the origin.
The EMBO Journal | 2009
Roxana E. Georgescu; Isabel Kurth; Nina Y. Yao; Jelena Stewart; Olga Yurieva; Mike O'Donnell
Replicative polymerases are tethered to DNA by sliding clamps for processive DNA synthesis. Despite attachment to a sliding clamp, the polymerase on the lagging strand must cycle on and off DNA for each Okazaki fragment. In the ‘collision release’ model, the lagging strand polymerase collides with the 5′ terminus of an earlier completed fragment, which triggers it to release from DNA and from the clamp. This report examines the mechanism of collision release by the Escherichia coli Pol III polymerase. We find that collision with a 5′ terminus does not trigger polymerase release. Instead, the loss of ssDNA on filling in a fragment triggers polymerase to release from the clamp and DNA. Two ssDNA‐binding elements are involved, the τ subunit of the clamp loader complex and an OB domain within the DNA polymerase itself. The τ subunit acts as a switch to enhance polymerase binding at a primed site but not at a nick. The OB domain acts as a sensor that regulates the affinity of Pol III to the clamp in the presence of ssDNA.
Journal of Biological Chemistry | 2002
Irina Bruck; Alexander Yuzhakov; Olga Yurieva; David Jeruzalmi; Maija Skangalis; John Kuriyan; Mike O'Donnell
This report takes a proteomic/genomic approach to characterize the DNA polymerase III replication apparatus of the extreme thermophile, Aquifex aeolicus. Genes (dnaX, holA, and holB) encoding the subunits required for clamp loading activity (τ, δ, and δ′) were identified. The dnaX gene produces only the full-length product, τ, and therefore differs from Escherichia coli dnaX that produces two proteins (γ and τ). Nonetheless, theA. aeolicus proteins form a τδδ′ complex. ThednaN gene encoding the β clamp was identified, and the τδδ′ complex is active in loading β onto DNA. A. aeolicus contains one dnaE homologue, encoding the α subunit of DNA polymerase III. Like E. coli, A. aeolicus α and τ interact, although the interaction is not as tight as the α−τ contact in E. coli. In addition, theA. aeolicus homologue to dnaQ, encoding the ε proofreading 3′–5′-exonuclease, interacts with α but does not form a stable α·ε complex, suggesting a need for a brace or bridging protein to tightly couple the polymerase and exonuclease in this system. Despite these differences to the E. coli system, the A. aeolicus proteins function to yield a robust replicase that retains significant activity at 90 °C. Similarities and differences between the A. aeolicus and E. coli pol III systems are discussed, as is application of thermostable pol III to biotechnology.