Roxana E. Georgescu
Howard Hughes Medical Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Roxana E. Georgescu.
Cell | 2008
Roxana E. Georgescu; Seung-Sup Kim; Olga Yurieva; John Kuriyan; Xiang-Peng Kong; Mike O'Donnell
The structure of the E. coli beta clamp polymerase processivity factor has been solved in complex with primed DNA. Interestingly, the clamp directly binds the DNA duplex and also forms a crystal contact with the ssDNA template strand, which binds into the protein-binding pocket of the clamp. We demonstrate that these clamp-DNA interactions function in clamp loading, perhaps by inducing the ring to close around DNA. Clamp binding to template ssDNA may also serve to hold the clamp at a primed site after loading or during switching of multiple factors on the clamp. Remarkably, the DNA is highly tilted as it passes through the beta ring. The pronounced 22 degrees angle of DNA through beta may enable DNA to switch between multiple factors bound to a single clamp simply by alternating from one protomer of the ring to the other.
Cell | 2006
Meindert H. Lamers; Roxana E. Georgescu; Sang-Gyu Lee; Mike O'Donnell; John Kuriyan
Bacterial replicative DNA polymerases such as Polymerase III (Pol III) share no sequence similarity with other polymerases. The crystal structure, determined at 2.3 A resolution, of a large fragment of Pol III (residues 1-917), reveals a unique chain fold with localized similarity in the catalytic domain to DNA polymerase beta and related nucleotidyltransferases. The structure of Pol III is strikingly different from those of members of the canonical DNA polymerase families, which include eukaryotic replicative polymerases, suggesting that the DNA replication machinery in bacteria arose independently. A structural element near the active site in Pol III that is not present in nucleotidyltransferases but which resembles an element at the active sites of some canonical DNA polymerases suggests that, at a more distant level, all DNA polymerases may share a common ancestor. The structure also suggests a model for interaction of Pol III with the sliding clamp and DNA.
The EMBO Journal | 2003
Francisco J. López de Saro; Roxana E. Georgescu; Myron F. Goodman; Mike O'Donnell
Protein clamps are ubiquitous and essential components of DNA metabolic machineries, where they serve as mobile platforms that interact with a large variety of proteins. In this report we identify residues that are required for binding of the β‐clamp to DNA polymerase III of Escherichia coli, a polymerase of the Pol C family. We show that the α polymerase subunit of DNA polymerase III interacts with the β‐clamp via its extreme seven C‐terminal residues, some of which are conserved. Moreover, interaction of Pol III with the clamp takes place at the same site as that of the δ‐subunit of the clamp loader, providing the basis for a switch between the clamp loading machinery and the polymerase itself. Escherichia coli DNA polymerases I, II, IV and V (UmuC) interact with β at the same site. Given the limited amounts of clamps in the cell, these results suggest that clamp binding may be competitive and regulated, and that the different polymerases may use the same clamp sequentially during replication and repair.
The EMBO Journal | 2002
Megan J. Davey; Linhua Fang; Peter McInerney; Roxana E. Georgescu; Mike O'Donnell
Helicases are transferred to replication origins by helicase loading factors. The Escherichia coli DnaC and eukaryotic Cdc6/18 helicase loaders contain ATP sites and are both members of the AAA+ family. One might expect that ATP is required for helicase loading; however, this study on DnaC illustrates that ATP is not actually needed for DnaC to load helicase onto single‐strand DNA (ssDNA). In fact, it seems to be a paradox that after transfer of helicase to DNA, DnaC–ATP inhibits helicase action. In addition, ATP is required for DnaC function at an early step in oriC replication in which ATP stimulates ssDNA binding by DnaC, leading to expansion of the ssDNA bubble at the origin. Two cofactors, ssDNA and DnaB, trigger hydrolysis of ATP, converting DnaC to the ADP form that no longer inhibits DnaB. These observations have led to the idea that DnaC is a ‘dual’ switch protein, where both the ATP and the ADP forms are sequentially required for replication. This dual switching process may underlie the sensitivity of DnaB to even small fluctuations in DnaC levels.
Nature Structural & Molecular Biology | 2014
Roxana E. Georgescu; Lance D. Langston; Nina Y. Yao; Olga Yurieva; Dan Zhang; Jeff Finkelstein; Tani Agarwal; Mike O'Donnell
Eukaryotes use distinct polymerases for leading- and lagging-strand replication, but how they target their respective strands is uncertain. We reconstituted Saccharomyces cerevisiae replication forks and found that CMG helicase selects polymerase (Pol) ɛ to the exclusion of Pol δ on the leading strand. Even if Pol δ assembles on the leading strand, Pol ɛ rapidly replaces it. Pol δ–PCNA is distributive with CMG, in contrast to its high stability on primed ssDNA. Hence CMG will not stabilize Pol δ, instead leaving the leading strand accessible for Pol ɛ and stabilizing Pol ɛ. Comparison of Pol ɛ and Pol δ on a lagging-strand model DNA reveals the opposite. Pol δ dominates over excess Pol ɛ on PCNA-primed ssDNA. Thus, PCNA strongly favors Pol δ over Pol ɛ on the lagging strand, but CMG over-rides and flips this balance in favor of Pol ɛ on the leading strand.
Nature Structural & Molecular Biology | 2015
Jingchuan Sun; Yi Shi; Roxana E. Georgescu; Zuanning Yuan; Brian T. Chait; Huilin Li; Mike O'Donnell
At the eukaryotic DNA replication fork, it is widely believed that the Cdc45–Mcm2–7–GINS (CMG) helicase is positioned in front to unwind DNA and that DNA polymerases trail behind the helicase. Here we used single-particle EM to directly image a Saccharomyces cerevisiae replisome. Contrary to expectations, the leading strand Pol ɛ is positioned ahead of CMG helicase, whereas Ctf4 and the lagging-strand polymerase (Pol) α–primase are behind the helicase. This unexpected architecture indicates that the leading-strand DNA travels a long distance before reaching Pol ɛ, first threading through the Mcm2–7 ring and then making a U-turn at the bottom and reaching Pol ɛ at the top of CMG. Our work reveals an unexpected configuration of the eukaryotic replisome, suggests possible reasons for this architecture and provides a basis for further structural and biochemical replisome studies.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Francisco J. López de Saro; Roxana E. Georgescu; Mike O'Donnell
Chromosomal DNA polymerases are tethered to DNA by a circular sliding clamp for high processivity. However, lagging strand synthesis requires the polymerase to rapidly dissociate on finishing each Okazaki fragment. The Escherichia coli replicase contains a subunit (τ) that promotes separation of polymerase from its clamp on finishing DNA segments. This report reveals the mechanism of this process. We find that τ binds the C-terminal residues of the DNA polymerase. Surprisingly, this same C-terminal “tail” of the polymerase interacts with the β clamp, and τ competes with β for this sequence. Moreover, τ acts as a DNA sensor. On binding primed DNA, τ releases the polymerase tail, allowing polymerase to bind β for processive synthesis. But on sensing the DNA is complete (duplex), τ sequesters the polymerase tail from β, disengaging polymerase from DNA. Therefore, DNA sensing by τ switches the polymerase peptide tail on and off the clamp and coordinates the dynamic turnover of polymerase during lagging strand synthesis.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Lance D. Langston; Dan Zhang; Olga Yurieva; Roxana E. Georgescu; Jeff Finkelstein; Nina Y. Yao; Mike O’Donnell
Significance All cells must replicate their chromosomes prior to cell division. This process is carried out by a collection of proteins, known as the replisome, that act together to unwind the double helix and synthesize two new DNA strands complementary to the two parental strands. The details of replisome function have been worked out for bacteria but are much less well understood for eukaryotic cells. We have developed a system for studying eukaryotic replisome function in vitro using purified proteins. Using this system, we have identified a direct interaction between the component that unwinds the DNA, the CMG (Cdc45-MCM-GINS) helicase, and the component that replicates the leading strand, DNA polymerase ε, to form a large helicase–polymerase holoenzyme comprising 15 separate proteins. DNA replication in eukaryotes is asymmetric, with separate DNA polymerases (Pol) dedicated to bulk synthesis of the leading and lagging strands. Pol α/primase initiates primers on both strands that are extended by Pol ε on the leading strand and by Pol δ on the lagging strand. The CMG (Cdc45-MCM-GINS) helicase surrounds the leading strand and is proposed to recruit Pol ε for leading-strand synthesis, but to date a direct interaction between CMG and Pol ε has not been demonstrated. While purifying CMG helicase overexpressed in yeast, we detected a functional complex between CMG and native Pol ε. Using pure CMG and Pol ε, we reconstituted a stable 15-subunit CMG–Pol ε complex and showed that it is a functional polymerase–helicase on a model replication fork in vitro. On its own, the Pol2 catalytic subunit of Pol ε is inefficient in CMG-dependent replication, but addition of the Dpb2 protein subunit of Pol ε, known to bind the Psf1 protein subunit of CMG, allows stable synthesis with CMG. Dpb2 does not affect Pol δ function with CMG, and thus we propose that the connection between Dpb2 and CMG helps to stabilize Pol ε on the leading strand as part of a 15-subunit leading-strand holoenzyme we refer to as CMGE. Direct binding between Pol ε and CMG provides an explanation for specific targeting of Pol ε to the leading strand and provides clear mechanistic evidence for how strand asymmetry is maintained in eukaryotes.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Nina Y. Yao; Roxana E. Georgescu; Jeff Finkelstein; Mike O'Donnell
Single-molecule techniques are developed to examine mechanistic features of individual E. coli replisomes during synthesis of long DNA molecules. We find that single replisomes exhibit constant rates of fork movement, but the rates of different replisomes vary over a surprisingly wide range. Interestingly, lagging strand synthesis decreases the rate of the leading strand, suggesting that lagging strand operations exert a drag on replication fork progression. The opposite is true for processivity. The lagging strand significantly increases the processivity of the replisome, possibly reflecting the increased grip to DNA provided by 2 DNA polymerases anchored to sliding clamps on both the leading and lagging strands.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Roxana E. Georgescu; Olga Yurieva; Seung-Sup Kim; John Kuriyan; Xiang-Peng Kong; Mike O'Donnell
DNA polymerases attach to the DNA sliding clamp through a common overlapping binding site. We identify a small-molecule compound that binds the protein-binding site in the Escherichia coli β-clamp and differentially affects the activity of DNA polymerases II, III, and IV. To understand the molecular basis of this discrimination, the cocrystal structure of the chemical inhibitor is solved in complex with β and is compared with the structures of Pol II, Pol III, and Pol IV peptides bound to β. The analysis reveals that the small molecule localizes in a region of the clamp to which the DNA polymerases attach in different ways. The results suggest that the small molecule may be useful in the future to probe polymerase function with β, and that the β-clamp may represent an antibiotic target.