Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olgaç Ergeneman is active.

Publication


Featured researches published by Olgaç Ergeneman.


IEEE Transactions on Robotics | 2007

Modeling Magnetic Torque and Force for Controlled Manipulation of Soft-Magnetic Bodies

Jake J. Abbott; Olgaç Ergeneman; Michael P. Kummer; Ann M. Hirt; Bradley J. Nelson

We calculate the torque and force generated by an arbitrary magnetic field on an axially symmetric soft-magnetic body. We consider the magnetization of the body as a function of the applied field, using a continuous model that unifies two disparate magnetic models. The continuous torque and force follow. The model is verified experimentally, and captures the often neglected region between weak and saturating fields, where interesting behavior is observed. We provide the field direction to maximize torque for a given field magnitude. We also find an absolute maximum torque, for a given body geometry and material, which can be generated with relatively weak applied fields. This paper is aimed at those interested in systems-level analysis, simulation, and real-time control of soft-magnetic bodies.


international conference on robotics and automation | 2010

OctoMag: An electromagnetic system for 5-DOF wireless micromanipulation

Bradley E. Kratochvil; Michael P. Kummer; Jake J. Abbott; Ruedi Borer; Olgaç Ergeneman; Bradley J. Nelson

We demonstrate five-degree-of-freedom (5-DOF) wireless magnetic control of a fully untethered microrobot (3-DOF position and 2-DOF pointing orientation). The microrobot can move through a large workspace and is completely unrestrained in the rotation DOF. We accomplish this level of wireless control with an electromagnetic system that we call OctoMag. OctoMags unique abilities are due to its utilization of complex nonuniform magnetic fields, which capitalizes on a linear representation of the coupled field contributions of multiple soft-magnetic-core electromagnets acting in concert. OctoMag was primarily designed to control intraocular microrobots for delicate retinal procedures, but it also has potential uses in other medical applications or micromanipulation under an optical microscope.


IEEE Sensors Journal | 2008

A Magnetically Controlled Wireless Optical Oxygen Sensor for Intraocular Measurements

Olgaç Ergeneman; Gorkem Dogangil; Michael P. Kummer; Jake J. Abbott; Mohammad Khaja Nazeeruddin; Bradley J. Nelson

The influence of oxygen on various ophthalmological complications is not completely understood and intraocular oxygen measurements are essential for better diagnosis and treatment. A magnetically controlled wireless sensor device is proposed for minimally invasive intraocular oxygen concentration measurements. This device will make it possible to make measurements at locations that are currently too invasive for human intervention by integrating a luminescence optical sensor and a magnetic steering system. The sensor works based on quenching of luminescence in the presence of oxygen. A novel iridium phosphorescent complex is designed and synthesized for this system. A frequency-domain lifetime measurement approach is employed because of the intrinsic nature of the lifetime of luminescence. Experimental results of the oxygen sensor together with magnetic and hydrodynamic characterization of the sensor platform are presented to demonstrate the concept. In order to use this sensor for in vivo intraocular applications, the size of the sensor must be reduced, which will require an improved signal-to-noise ratio.


Investigative Ophthalmology & Visual Science | 2013

Mobility experiments with microrobots for minimally invasive intraocular surgery.

Franziska Ullrich; Christos Bergeles; Juho Pokki; Olgaç Ergeneman; Sandro Erni; George Chatzipirpiridis; Salvador Pané; Carsten Framme; Bradley J. Nelson

PURPOSE To investigate microrobots as an assistive tool for minimally invasive intraocular surgery and to demonstrate mobility and controllability inside the living rabbit eye. METHODS A system for wireless magnetic control of untethered microrobots was developed. Mobility and controllability of a microrobot are examined in different media, specifically vitreous, balanced salt solution (BSS), and silicone oil. This is demonstrated through ex vivo and in vivo animal experiments. RESULTS The developed electromagnetic system enables precise control of magnetic microrobots over a workspace that covers the posterior eye segment. The system allows for rotation and translation of the microrobot in different media (vitreous, BSS, silicone oil) inside the eye. CONCLUSIONS Intravitreal introduction of untethered mobile microrobots can enable sutureless and precise ophthalmic procedures. Ex vivo and in vivo experiments demonstrate that microrobots can be manipulated inside the eye. Potential applications are targeted drug delivery for maculopathies such as AMD, intravenous deployment of anticoagulation agents for retinal vein occlusion (RVO), and mechanical applications, such as manipulation of epiretinal membrane peeling (ERM). The technology has the potential to reduce the invasiveness of ophthalmic surgery and assist in the treatment of a variety of ophthalmic diseases.


Advanced Healthcare Materials | 2013

Chitosan Electrodeposition for Microrobotic Drug Delivery

Stefano Fusco; George Chatzipirpiridis; Kartik M. Sivaraman; Olgaç Ergeneman; Bradley J. Nelson; Salvador Pané

A method to functionalize steerable magnetic microdevices through the co-electrodeposition of drug loaded chitosan hydrogels is presented. The characteristics of the polymer matrix have been investigated in terms of fabrication, morphology, drug release and response to different environmental conditions. Modifications of the matrix behavior could be achieved by simple chemical post processing. The system is able to load and deliver 40-80 μg cm(-2) of a model drug (Brilliant Green) in a sustained manner with different profiles. Chitosan allows a pH responsive behavior with faster and more efficient release under slightly acidic conditions as can be present in tumor or inflamed tissue. A prototype of a microrobot functionalized with the hydrogel is presented and proposed for the treatment of posterior eye diseases.


Nano Letters | 2015

Undulatory Locomotion of Magnetic Multilink Nanoswimmers

Bumjin Jang; Emiliya Gutman; Nicolai Stucki; Benedikt F. Seitz; Pedro D. Wendel-García; Taylor Newton; Juho Pokki; Olgaç Ergeneman; Salvador Pané; Yizhar Or; Bradley J. Nelson

Micro- and nanorobots operating in low Reynolds number fluid environments require specialized swimming strategies for efficient locomotion. Prior research has focused on designs mimicking the rotary corkscrew motion of bacterial flagella or the planar beating motion of eukaryotic flagella. These biologically inspired designs are typically of uniform construction along their flagellar axis. This work demonstrates for the first time planar undulations of composite multilink nanowire-based chains (diameter 200 nm) induced by a planar-oscillating magnetic field. Those chains comprise an elastic eukaryote-like polypyrrole tail and rigid magnetic nickel links connected by flexible polymer bilayer hinges. The multilink design exhibits a high swimming efficiency. Furthermore, the manufacturing process enables tuning the geometrical and material properties to specific applications.


intelligent robots and systems | 2008

Toward targeted retinal drug delivery with wireless magnetic microrobots

Goerkem Dogangil; Olgaç Ergeneman; Jake J. Abbott; Salvador Pané; Heike Hall; Simon Muntwyler; Bradley J. Nelson

Retinal vein occlusion is an obstruction of blood flow due to clot formation in the retinal vasculature, and is among the most common causes of vision loss. Currently, the most promising therapy involves injection of t-PA directly into small and delicate retinal vessels. This procedure requires surgical skills at the limits of human performance. In this paper, targeted retinal drug delivery with wireless magnetic microrobots is proposed. We focus on four fundamental issues involved in the development of such a system: biocompatible coating of magnetic microrobots, diffusion-based drug delivery, characterization of forces needed to puncture retinal veins, and wireless magnetic force generation. We conclude that targeted drug delivery with magnetic microrobots is feasible from an engineering perspective, and the idea should now be explored for clinical efficacy.


Advanced Healthcare Materials | 2015

Electroforming of Implantable Tubular Magnetic Microrobots for Wireless Ophthalmologic Applications

George Chatzipirpiridis; Olgaç Ergeneman; Juho Pokki; Franziska Ullrich; Stefano Fusco; José A. Ortega; Kartik M. Sivaraman; Bradley J. Nelson; Salvador Pané

Magnetic tubular implantable micro-robots are batch fabricated by electroforming. These microdevices can be used in targeted drug delivery and minimally invasive surgery for ophthalmologic applications. These tubular shapes are fitted into a 23-gauge needle enabling sutureless injections. Using a 5-degree-of-freedom magnetic manipulation system, the microimplants are conveniently maneuvered in biological environments. To increase their functionality, the tubes are coated with biocompatible films and can be successfully filled with drugs.


IEEE Transactions on Biomedical Engineering | 2012

In Vitro Oxygen Sensing Using Intraocular Microrobots

Olgaç Ergeneman; George Chatzipirpiridis; Juho Pokki; Marta Marín-Suárez; Georgios A. Sotiriou; Santiago Medina-Rodríguez; Jorge F. Fernández Sánchez; Alberto Fernández-Gutiérrez; Salvador Pané; Bradley J. Nelson

We present a luminescence oxygen sensor integrated with a wireless intraocular microrobot for minimally-invasive diagnosis. This microrobot can be accurately controlled in the intraocular cavity by applying magnetic fields. The microrobot consists of a magnetic body susceptible to magnetic fields and a sensor coating. This coating embodies Pt(II) octaethylporphine (PtOEP) dyes as the luminescence material and polystyrene as a supporting matrix, and it can be wirelessly excited and read out by optical means. The sensor works based on quenching of luminescence in the presence of oxygen. The excitation and emission spectrum, response time, and oxygen sensitivity of the sensor were characterized using a spectrometer. A custom device was designed and built to use this sensor for intraocular measurements with the microrobot. Due to the intrinsic nature of luminescence lifetimes, a frequency-domain lifetime measurement approach was used. An alternative sensor design with increased performance was demonstrated by using poly(styrene-co-maleic anhydride) (PS-MA) and PtOEP nanospheres.


international conference on robotics and automation | 2008

Modeling assembled-MEMS microrobots for wireless magnetic control

Zoltán Nagy; Olgaç Ergeneman; Jake J. Abbott; Marco Hutter; Ann M. Hirt; Bradley J. Nelson

Capitalizing on advances in CMOS and MEMS technologies, microrobots have the potential to dramatically change many aspects of medicine by navigating bodily fluids to perform targeted diagnosis and therapy. Onboard energy storage and actuation is very difficult at the microscale, but externally applied magnetic fields provide an unparalleled means of wireless power and control. Recent results have provided a model for accurate real-time control of soft-magnetic bodies with axially symmetric geometries. In this paper, we extend the model to consider the real-time control of assembled-MEMS devices that may have significantly more complex geometries. We validate the model through FEM and experiments. The model captures the characteristics of complex 3-D structures and allows us, for the first time, to consider full 6-DOF control of untethered devices, which can act as in vivo microrobots or as end-effectors of micromanipulation systems.

Collaboration


Dive into the Olgaç Ergeneman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eva Pellicer

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge