Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olinda Almeida is active.

Publication


Featured researches published by Olinda Almeida.


The Journal of Experimental Biology | 2005

Olfactory discrimination of female reproductive status by male tilapia(Oreochromis mossambicus)

António Miranda; Olinda Almeida; Peter C. Hubbard; Eduardo N. Barata; Adelino V. M. Canario

SUMMARY The current study investigated whether discrimination of sexual status of female tilapia by males is mediated by olfaction. Size-matched groups of female tilapia were assigned as pre- or post-ovulatory according to the time since their last ovulation (15-19 days pre-ovulatory, N=7; 1-3 days post-ovulatory, N=8). Female-conditioned water and body fluids (urine, bile, faeces and plasma) were assessed for olfactory potency in males by recording the electro-olfactogram (EOG). Water extracts, urine and faeces from pre-ovulatory females all evoked significantly larger amplitude EOGs in male fish (N=6), with correspondingly lower thresholds of detection, than those from post-ovulatory females. Plasma and bile evoked very large amplitude EOGs in males but with no differences between the two groups of females. Anosmic males (N=6) did not behave differently towards pre- or post-ovulatory females, while sham-operated males (N=6) showed a marked increase in urination rate towards pre-ovulatory females. We conclude that the ability of male tilapia to discriminate between females of differing reproductive status is mediated by odorants released into the water, probably via the urine and faeces, by pre-ovulatory females.


Journal of Chemical Ecology | 2008

A Sterol-Like Odorant in the Urine of Mozambique Tilapia Males Likely Signals Social Dominance to Females

Eduardo N. Barata; Jared M. Fine; Peter C. Hubbard; Olinda Almeida; Pedro R. Frade; Peter W. Sorensen; Adelino V. M. Canario

Many species of freshwater fish with relatively simple mating strategies release hormonally derived sex pheromones in urine. However, it is not known whether species with more complex reproductive strategies use specialized urinary chemical signals. We addressed this by using the Mozambique tilapia (Oreochromis mossambicus Peters 1852), a lek-breeding species in which males establish dominance hierarchies and visiting females mate preferentially with territorial/dominant males. We measured urination frequency of territorial males in social isolation and in the presence of females that were either ready to spawn or had finished spawning. In groups of fish, we monitored the volume of urine stored in subordinate and dominant males to determine if urine volume and olfactory potency (by recording electro-olfactograms, EOG, in females) are related to the male’s social rank. Dominant, territorial males stored more urine than subordinates and released it in short pulses, the frequency of which increased in the presence of females ready to spawn but not in the presence of post-spawn females. Urine from subordinate and dominant males was fractionated by liquid chromatography and fractions tested for olfactory potency by using the EOG, with the most potent fraction analyzed by mass spectrometry (MS). The olfactory system of females was sensitive to a urinary compound that was more abundant in the urine of dominant males than in that of subordinates. MS analysis suggested the compound is a sulfated aminosterol-like compound with a formula of C29H40N2O10S. Therefore, we suggest that dominant/territorial tilapia males dramatically increase urination frequency in the presence of females ready to spawn and that the urinary odorant acts as a pheromonal signal of dominance, thereby influencing female spawning.


Hormones and Behavior | 2012

Brain levels of arginine–vasotocin and isotocin in dominant and subordinate males of a cichlid fish

Olinda Almeida; Magdalena Gozdowska; Ewa Kulczykowska; Rui Filipe Oliveira

The nonapeptides arginine-vasotocin (AVT) and isotocin (IT), which are the teleost homologues of arginine-vasopressin and oxytocin in mammals, have well established peripheral effects on osmoregulation and stress response, and central effects on social behavior. However, all studies that have looked so far into the relationship between these nonapeptides and social behavior have used indirect measures of AVT/IT activity (i.e. immunohistochemistry of AVT/IT immunoreactive neurons, or AVT/IT or their receptors mRNA expression with in situ hybridization or qPCR) and therefore direct measures of peptide levels in relation to social behavior are still lacking. Here we use a recently developed high-performance liquid chromatography analysis with fluorescence detection (HPLC-FL) method to quantify the levels of both AVT and IT in macro-dissected brain areas [i.e. olfactory bulbs, telencephalon, diencephalon, optic tectum, cerebellum, and hindbrain (= rhombencephalon minus cerebellum)] and pituitary of dominant and subordinate male cichlid fish (Oreochromis mossambicus). The pituitary shows higher levels of both peptides than any of the brain macroareas, and the olfactory bulbs have the highest AVT among all brain areas. Except for IT in the telencephalon there is a lack of correlations between central levels and pituitary peptide levels, suggesting an independent control of hypophysial and CNS nonapeptide secretion. There were also no correlations between AVT and IT levels either for each brain region or for the pituitary gland, suggesting a decoupled activity of the AVT and IT systems at the CNS level. Subordinate AVT pituitary levels are significantly higher than those of dominants, and dominant hindbrain IT levels are significantly higher than those of subordinates, suggesting a potential involvement of AVT in social stress in subordinate fish and of IT in the regulation of dominant behavior at the level of the hindbrain. Since in this species dominant males use urine to communicate social status and since AVT is known to have an antidiuretic effect, we have also investigated the effect of social status on urine storage. As predicted, dominant males stored significantly more urine than subordinates. Given these results we suggest that AVT/IT play a key role in orchestrating social phenotypes, acting both as central neuromodulators that promote behavioral plasticity and as peripheral hormones that promote integrated physiological changes.


Proceedings of the Royal Society B: Biological Sciences | 2015

Social interactions elicit rapid shifts in functional connectivity in the social decision-making network of zebrafish.

Magda Teles; Olinda Almeida; João Sollari Lopes; Rui Filipe Oliveira

According to the social decision-making (SDM) network hypothesis, SDM is encoded in a network of forebrain and midbrain structures in a distributed and dynamic fashion, such that the expression of a given social behaviour is better reflected by the overall profile of activation across the different loci rather than by the activity of a single node. This proposal has the implicit assumption that SDM relies on integration across brain regions, rather than on regional specialization. Here we tested the occurrence of functional localization and of functional connectivity in the SDM network. For this purpose we used zebrafish to map different social behaviour states into patterns of neuronal activity, as indicated by the expression of the immediate early genes c-fos and egr-1, across the SDM network. The results did not support functional localization, as some loci had similar patterns of activity associated with different social behaviour states, and showed socially driven changes in functional connectivity. Thus, this study provides functional support to the SDM network hypothesis and suggests that the neural context in which a given node of the network is operating (i.e. the state of its interconnected areas) is central to its functional relevance.


General and Comparative Endocrinology | 2014

Tilapia male urinary pheromone stimulates female reproductive axis

Mar Huertas; Olinda Almeida; Adelino V. M. Canario; Peter C. Hubbard

Mozambique tilapia males congregate in leks where they establish dominance hierarchies and attract females to spawn in sandy pits. Dominant males store more urine than subordinates and the pattern of urination and the high sensitivity of females to male urine suggest chemical signalling via the urine. Here we show that pre-ovulated and post-spawn females when exposed to dominant male urine increased significantly, in less than 1h, the release rate of the maturation-inducing steroid 17,20β-dihydroxypregn-4-en-3-one which is maintained elevated for at least 6h. This indicates a pheromonal role for male urine in the synchronisation of spawning. Furthermore, we show that the lack of affinity of 17,20βP to sex steroid binding globulin explains, at least partly, its rapid release and lack of detection in the blood. Thus tilapia urine involvement in several communication processes confirms that cichlids have evolved a sophisticated chemical signalling system together with their complex visual, acoustic and behavioural displays.


Hormones and Behavior | 2014

Social instability promotes hormone–behavior associated patterns in a cichlid fish

Olinda Almeida; Eliane Gonçalves-de-Freitas; João Sollari Lopes; Rui Filipe Oliveira

Androgens are known to respond to social challenges and to control the expression of social behavior and reproductive traits, such as gonadal maturation and sperm production, expression of secondary sex characters and reproductive behaviors. According to the challenge hypothesis variation in androgen levels above a breeding baseline should be explained by the regime of social challenges faced by the individual considering the trade-offs of androgens with other traits (e.g. parental care). One prediction that can be derived from the challenge hypothesis is that androgen levels should increase in response to social instability. Moreover, considering that a tighter association of relevant traits is expected in periods of environmental instability, we also predict that in unstable environments the degree of correlations among different behaviors should increase and hormones and behavior should be associated. These predictions were tested in a polygamous cichlid fish (Mozambique tilapia, Oreochromis mossambicus) with exclusive maternal care. Social instability was produced by swapping dominant males among groups. Stable treatment consisted in removing and placing back dominant males in the same group, in order to control for handling stress. Cortisol levels were also measured to monitor stress levels involved in the procedure and their relation to the androgen patterns and behavior. As predicted androgen levels increased in males in response to the establishment of a social hierarchy and presence of receptive females. However, there were no further differential increases in androgen levels over the social manipulation phase between social stable and social unstable groups. As predicted behaviors were significantly more correlated among themselves in the unstable than in the stable treatment and an associated hormone-behavior pattern was only observed in the unstable treatment.


Behaviour | 2012

Muscular hypertrophy of urinary bladders in dominant tilapia facilitates the control of aggression through urinary signals

Tina Keller-Costa; Orlando Lopes; Olinda Almeida; Peter C. Hubbard; A. Iacovella; M. Lima; Eduardo N. Barata; Adelino V. M. Canario

The urination pattern of the Mozambique tilapia (Oreochromis mossambicus) depends on social context, and the olfactory potency of urine released depends on social rank (males) and reproductive status (females). This strongly suggests that urine mediates chemical communication in this species. The current study tested, firstly, whether urine production rate depends on sex or social status and, secondly, whether differences in urination pattern and volume of urine stored are associated with variation in the morphology of the urinary bladder. Finally, the effect of urination during aggressive male–male interactions was assessed. Urine production in catheterized fish depended neither on sex nor social status (males). Nevertheless, males had larger kidneys than females. Dominant males had heavier urinary bladders than subordinate males or females, mainly due to enlarged muscle fibres, thicker urothelium and a thicker smooth muscle layer. In male pairs wherein urination was prevented by temporary constriction of the genital papillae, social interaction escalated to aggression (mouth-to-mouth fighting) more rapidly and frequently than control pairs. This was accompanied by elevated plasma testosterone and 11-ketotestosterone levels. In control encounters, the male that initiated the aggressive behaviour was usually the winner of the subsequent fight; this did not happen when the males could not urinate. These results suggest that the larger, more muscular bladder of dominant males is an adaptation, facilitating higher urination frequency, post-renal modulation and storage of larger urine volumes for longer. It is likely that urinary pheromones modulate aggression in male–male encounters by providing information on the social rank and/or motivation of the emitter; males are unlikely to invest in costly highly aggressive


Brain Behavior and Evolution | 2015

Social Status and Arginine Vasotocin Neuronal Phenotypes in a Cichlid Fish

Olinda Almeida; Rui Filipe Oliveira

The nonapeptide arginine vasotocin (AVT) and its mammalian homologue arginine vasopressin play a key role in the regulation of social behaviour across vertebrates. In teleost fishes, three AVT neuronal populations have been described in the preoptic area (POA): the parvocellular (pPOA), the magnocellular (mPOA) and the gigantocellular (gPOA). Neurons from each of these areas project both to the pituitary and to other brain regions, where AVT is supposed to regulate neural circuits underlying social behaviour. However, in the fish species studied so far, there is considerable variation in which AVT neuronal populations are involved in behavioural modulation and in the direction of the effect. In this study, the association between AVT neuronal phenotypes and social status was investigated in the Mozambique tilapia (Oreochromis mossambicus). This species is an African female mouth-brooding cichlid fish in which males form breeding aggregations in which dominant males establish territories and subordinate males to act as floaters. With respect to sex differences in AVT neuronal phenotypes, females have a larger number of AVT neurons in the pPOA and mPOA. Within males, AVT appeared associated with social subordination, as indicated by the larger cell body areas of AVT neurons in mPOA and gPOA nuclei of non-territorial males. There were also positive correlations between submissive behaviour and the soma size of AVT cells in all three nuclei and AVT cell number in the mPOA. In summary, the results provide evidence for an involvement of AVT in the modulation of social behaviour in tilapia, but it was not possible to identify specific roles for specific AVT neuronal populations. The results presented here also contrast with those previously published for another cichlid species with a similar mating system, which highlights the species-specific nature of the pattern of association between AVT and social behaviour even within the same taxonomic family.


General and Comparative Endocrinology | 2014

Castration affects reproductive but not aggressive behavior in a cichlid fish.

Olinda Almeida; Adelino V. M. Canario; Rui Filipe Oliveira

Gonads are the main source of sex steroids, which have been implicated in the regulation of sexually differentiated behavior, such as reproductive and aggressive displays. In the Mozambique tilapia (Oreochromis mossambicus) territorial males have higher androgen levels than non-territorials, express reproductive behavior and use a urine-borne pheromone to signal their social status towards conspecifics. Here we investigated the effects of gonadectomy on the circulating levels of androgens and cortisol, and on the expression of aggressive and reproductive behavior (nest building, courtship behavior, and nuptial coloration). Males were either castrated, urine bladder damaged, or sham-operated and visually exposed to a group of females during 8 consecutive days and subsequently to a male on day 9. The urine bladder damaged treatment was included in the experimental design because a full castration procedure in this species causes quite often damage to the urine bladder. Gonadectomy lowers dramatically the circulating levels of androgens measured at 4 and 8days post-castration and abolishes the expression of nest building, courtship behavior and nuptial coloration, but has no effect on the expression of aggressive behavior. These results confirm the gonads as the main source of androgens in this species and show that androgens are necessary for the expression of reproductive behaviors. However, the expression of aggressive behavior seems to be decoupled from gonadal steroids, namely androgens, suggesting the action of independent central mechanisms.


General and Comparative Endocrinology | 2009

Ca2+-Calmodulin regulation of testicular androgen production in Mozambique tilapia (Oreochromis mossambicus)

Rute S.T. Martins; Juan Fuentes; Olinda Almeida; Deborah M. Power; Adelino V. M. Canario

The Ca(2+)-Calmodulin (CaM) signaling pathway has previously been shown to be involved in the regulation of teleost fish ovarian steroidogenesis. However, a putative role of CaM in testicular steroidogenesis and potential targets has not been examined. To examine whether basal steroidogenesis is modulated by Ca(2+) and CaM levels in the testis of Mozambique tilapia (Oreochromis mossambicus) we have incubated testicular fragments in vitro under different conditions and analyzed steroid output. Calcium-free medium with or without EGTA did not affect testicular basal 11-ketotestosterone (11-KT) and testosterone (T) secretion. However, addition of 80microM the CaM inhibitor W7 significantly reduced basal 11-KT, T and androstenedione secretion. Interestingly, the decreased androgen production by 80microM of W7 was accompanied by increased 11-desoxicortisol output and by the activation of cortisol synthesis in the testis, the latter undetected in untreated tissues. However, production of 17,20alpha-dihydroxy-4-pregnen-3-one was unaltered by W7. This suggests that C17,20 desmolase, 21-hydroxylase and possibly 11beta-hydroxysteroid dehydrogenase are targets for CaM. In addition, androgen production was also found to be regulated by the level of cAMP since incubations with forskolin (FK) significantly increased 11-KT and T output. A cross-talk between the cAMP and Ca(2+)-CaM signaling pathways was detected since W7 administration also decreased FK stimulated androgen production. Altogether, these data show that both basal and cAMP stimulated androgen levels were modulated by intracellular Ca(2+)-dependent CaM and that possibly Ca(2+)-CaM determines the shift in steroidogenesis from C21 steroids to androgens.

Collaboration


Dive into the Olinda Almeida's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rui Filipe Oliveira

Instituto Gulbenkian de Ciência

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pedro R. Frade

University of the Algarve

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mar Huertas

Michigan State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge