Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Oliver B. Betz is active.

Publication


Featured researches published by Oliver B. Betz.


Journal of Bone and Joint Surgery, American Volume | 2006

Direct Percutaneous Gene Delivery to Enhance Healing of Segmental Bone Defects

Oliver B. Betz; Volker M. Betz; Ara Nazarian; Carmencita Pilapil; Mark S. Vrahas; Mary L. Bouxsein; Louis C. Gerstenfeld; Thomas A. Einhorn; Christopher H. Evans

BACKGROUND Healing of segmental bone defects can be induced experimentally with genetically modified osteoprogenitor cells, an ex vivo strategy that requires two operative interventions and substantial cost. Direct transfer of osteogenic genes offers an alternative, clinically expeditious, cost-effective approach. We evaluated its potential in a well-established, critical-size, rat femoral defect model. METHODS A critical-size defect was created in the right femur of forty-eight skeletally mature Sprague-Dawley rats. After twenty-four hours, each defect received a single, intralesional, percutaneous injection of adenovirus carrying bone morphogenetic protein-2 (Ad.BMP-2) or luciferase cDNA (Ad.luc) or it remained untreated. Healing was monitored with weekly radiographs. At eight weeks, the rats were killed and the femora were evaluated with dual-energy x-ray absorptiometry, micro-computed tomography, histological analysis, histomorphometry, and torsional mechanical testing. RESULTS Radiographically, 75% of the Ad.BMP-2-treated femora showed osseous union. Bone mineral content was similar between the Ad.BMP-2-treated femora (0.045 +/- 0.020 g) and the contralateral, intact femora (0.047 +/- 0.003 g). Histologically, 50% of the Ad.BMP-2-treated defects were bridged by lamellar, trabecular bone; the other 50% contained islands of cartilage. The control (Ad.luc-treated) defects were filled with fibrous tissue. Histomorphometry demonstrated a large difference in osteogenesis between the Ad.BMP-2 group (mean bone area, 3.25 +/- 0.67 mm(2)) and the controls (mean bone area, 0.65 +/- 0.67 mm(2)). By eight weeks, the Ad.BMP-2-treated femora had approximately one-fourth of the strength (mean, 0.07 +/- 0.04 Nm) and stiffness (mean, 0.5 +/- 0.4 Nm/rad) of the contralateral femora (0.3 +/- 0.08 Nm and 2.0 +/- 0.5 Nm/rad, respectively). CONCLUSIONS A single, percutaneous, intralesional injection of Ad.BMP-2 induces healing of critical-size femoral bone defects in rats within eight weeks. At this time, the repair tissue is predominantly trabecular bone, has normal bone mineral content, and has gained mechanical strength.


Journal of Orthopaedic Research | 2009

Osteogenic Potential of Reamer Irrigator Aspirator (RIA) Aspirate Collected from Patients Undergoing Hip Arthroplasty

Ryan M. Porter; Fangjun Liu; Carmencita Pilapil; Oliver B. Betz; Mark S. Vrahas; Mitchel B. Harris; Christopher H. Evans

Intramedullary nailing preceded by canal reaming is the current standard of treatment for long‐bone fractures requiring stabilization. However, conventional reaming methods can elevate intramedullary temperature and pressure, potentially resulting in necrotic bone, systemic embolism, and pulmonary complications. To address this problem, a reamer irrigator aspirator (RIA) has been developed that combines irrigation and suction for reduced‐pressure reaming with temperature modulation. Osseous particles aspirated by the RIA can be recovered by filtration for use as an autograft, but the flow‐through is typically discarded. The purpose of this study was to assess whether this discarded filtrate has osteogenic properties that could be used to enhance the total repair potential of aspirate. RIA aspirate was collected from five patients (ages 71–78) undergoing hip hemiarthroplasty. Osseous particles were removed using an open‐pore filter, and the resulting filtrate (230 ± 200 mL) was processed by Ficoll‐gradient centrifugation to isolate mononuclear cells (6.2 ± 5.2 × 106 cells/mL). The aqueous supernatant contained FGF‐2, IGF‐I, and latent TGF‐β1, but BMP‐2 was below the limit of detection. The cell fraction included culture plastic‐adherent, fibroblastic cells that displayed a surface marker profile indicative of mesenchymal stem cells and that could be induced along the osteogenic, adipogenic, and chondrogenic lineages in vitro. When compared to outgrowth cells from the culture of osseous particles, filtrate cells were more sensitive to seeding density during osteogenic culture but had similar capacity for chondrogenesis. These results suggest using RIA aspirate to develop improved, clinically expeditious, cost‐effective technologies for accelerating the healing of bone and other musculoskeletal tissues.


Gene Therapy | 2004

Gene delivery to cartilage defects using coagulated bone marrow aspirate

Arnulf Pascher; Glyn D. Palmer; Andre F. Steinert; Thomas Oligino; Elvire Gouze; Jean Noel Gouze; Oliver B. Betz; Myron Spector; Paul D. Robbins; Christopher H. Evans; S. C. Ghivizzani

The long-term goal of the present study is to develop a clinically applicable approach to enhance natural repair mechanisms within cartilage lesions by targeting bone marrow-derived cells for genetic modification. To determine if bone marrow-derived cells infiltrating osteochondral defects could be transduced in situ, we implanted collagen–glycosaminoglycan (CG) matrices preloaded with adenoviral vectors containing various marker genes into lesions surgically generated in rabbit femoral condyles. Analysis of the recovered implants showed transgenic expression up to 21 days; however, a considerable portion was found in the synovial lining, indicating leakage of the vector and/or transduced cells from the matrix. As an alternative medium for gene delivery, we investigated the feasibility of using coagulated bone marrow aspirates. Mixture of an adenoviral suspension with the fluid phase of freshly aspirated bone marrow resulted in uniform dispersion of the vector throughout, and levels of transgenic expression in direct proportion to the density of nucleated cells in the ensuing clot. Furthermore, cultures of mesenchymal progenitor cells, previously transduced ex vivo with recombinant adenovirus, were readily incorporated into the coagulate when mixed with fresh aspirate. These vector-seeded and cell-seeded bone marrow clots were found to maintain their structural integrity following extensive culture and maintained transgenic expression in this manner for several weeks. When used in place of the CG matrix as a gene delivery vehicle in vivo, genetically modified bone marrow clots were able to generate similarly high levels of transgenic expression in osteochondral defects with better containment of the vector within the defect. Our results suggest that coagulates formed from aspirated bone marrow may be useful as a means of gene delivery to cartilage and perhaps other musculoskeletal tissues. Cells within the fluid can be readily modified with an adenoviral vector, and the matrix formed from the clot is completely natural, native to the host and is the fundamental platform on which healing and repair of mesenchymal tissues is based.


Gene Therapy | 2007

Delayed administration of adenoviral BMP-2 vector improves the formation of bone in osseous defects

Oliver B. Betz; Volker M. Betz; Ara Nazarian; Marcus Egermann; Louis C. Gerstenfeld; Thomas A. Einhorn; Mark S. Vrahas; Mary L. Bouxsein; Christopher H. Evans

The direct, local, administration of adenovirus carrying human BMP-2 cDNA (Ad.BMP-2) heals critical-sized femoral bone defects in rabbit and rat models. However, the outcome is suboptimal and the technology needs to provide a more reliable and uniform outcome. To this end, we investigated whether the timing of Ad.BMP-2 administration influenced the formation of mineralized tissue within the defect. Critical-sized defects were created in the femora of 28 Sprague–Dawley rats. Animals were injected intralesionally with a single, percutaneous injection of Ad.BMP-2 (4 × 108 plaque-forming units) either intraoperatively (day 0) or 24 h (day 1), 5 days or 10 days after surgery. The femora were evaluated 8 weeks after surgery by X-ray, microcomputed tomography, dual-energy X-ray absorptiometry and biomechanical testing. The incidence of radiological union was markedly increased when administration of Ad.BMP-2 was delayed until days 5 and 10, at which point 86% of the defects healed. These time points also provided greater bone mineral content within the defect site and improved the average mechanical strength of the healed bone. Thus, delaying the injection of Ad.BMP-2 until 5 or 10 days after surgery enables a greater percentage of critical-sized, segmental defects to achieve radiological union, producing a repair tissue with enhanced mineralization and greater mechanical strength.


Gene Therapy | 2008

Ex vivo adenoviral transfer of bone morphogenetic protein 12 (BMP-12) cDNA improves Achilles tendon healing in a rat model.

Martin Majewski; Oliver B. Betz; Peter E Ochsner; Fangjun Liu; Ryan M. Porter; Christopher H. Evans

The aim of our study was to evaluate the histological and biomechanical effects of BMP-12 gene transfer on the healing of rat Achilles tendons using a new approach employing a genetically modified muscle flap. Biopsies of autologous skeletal muscle were transduced with a type-five, first-generation adenovirus carrying the human BMP-12 cDNA (Ad.BMP-12) and surgically implanted around experimentally transected Achilles tendons in a rat model. The effect of gene transfer on healing was evaluated by mechanical and histological testing after 1, 2, 4 and 8 weeks. One week after surgery, the maximum failure load of the healing tendons was significantly increased in the BMP-12 group, compared with the controls, and the tendon stiffness was significantly higher at 1, 2 and 4 weeks. Moreover, the size of the rupture callus was increased in the presence of BMP-12 and there was evidence of accelerated remodeling of the lesion in response to BMP-12. Histological examination showed a much more organized and homogeneous pattern of collagen fibers at all time points in lesions treated with the BMP-12 cDNA muscle graft. Both single fibrils and the collagen fibers had a greater diameter, with a higher degree of collagen crimp than the collagen of the control groups. This was confirmed by sirius red staining in conjunction with polarized light microscopy, which showed a higher shift of small yellow-green fibers to strong yellow-orange fibers after 2, 4 and 8 weeks in the presence of BMP-12 cDNA. There was also an earlier shift from fibroblasts to fibrocytes within the healing tendon, with less fat cells present in the tendons of the BMP-12 group compared with the controls. Treatment with BMP-12 cDNA-transduced muscle grafts thus produced a promising acceleration and improvement of tendon healing, particularly influencing early tissue regeneration, leading to quicker recovery and improved biomechanical properties of the Achilles tendon. Further development of this approach could have clinical applications.


Frontiers in Bioscience | 2008

Bone tissue engineering and repair by gene therapy.

Volker M. Betz; Oliver B. Betz; Mitchel B. Harris; Mark S. Vrahas; Christopher H. Evans

Many clinical conditions require the stimulation of bone growth. The use of recombinant bone morphogenetic proteins does not provide a satisfying solution to these conditions due to delivery problems and high cost. Gene therapy has emerged as a very promising approach for bone repair that overcomes limitations of protein-based therapy. Several preclinical studies have shown that gene transfer technology has the ability to deliver osteogenic molecules to precise anatomical locations at therapeutic levels for sustained periods of time. Both in-vivo and ex-vivo transduction of cells can induce bone formation at ectopic and orthotopic sites. Genetic engineering of adult stem cells from various sources with osteogenic genes has led to enhanced fracture repair, spinal fusion and rapid healing of bone defects in animal models. This review describes current viral and non-viral gene therapy strategies for bone tissue engineering and repair including recent work from the authors laboratory. In addition, the article discusses the potential of gene-enhanced tissue engineering to enter widespread clinical use.


Human Gene Therapy | 2009

Healing of Large Segmental Bone Defects Induced by Expedited Bone Morphogenetic Protein-2 Gene-Activated, Syngeneic Muscle Grafts

Oliver B. Betz; Volker M. Betz; Ahmed Abdulazim; Rainer Penzkofer; Bärbel Schmitt; Christian Schröder; Peter Augat; Volkmar Jansson; Peter Müller

Numerous preclinical studies have shown that osseous defects can be repaired by implanting bone morphogenetic protein (BMP)-2-transduced muscle cells. However, the drawback of this treatment modality is that it requires the isolation and long-term (approximately 3 weeks) culture of transduced autologous cells, which makes this approach cumbersome, time-consuming, and expensive. Therefore, we transferred BMP-2 cDNA directly to muscle tissue fragments that were held in culture for only 24 hr before implantation. We evaluated the ability of such gene-activated muscle grafts to induce bone repair. Two of 35 male, syngeneic Fischer 344 rats used in this study served as donors for muscle tissue. The muscle fragments remained unmodified or were incubated with an adenoviral vector carrying the cDNA encoding either green fluorescent protein (GFP) or BMP-2. Critical-size defects were created in the right femora of 33 rats and remained untreated or were filled (press fitted) with either unmodified muscle tissue or GFP-transduced muscle tissue or with BMP-2-activated muscle tissue. After 6 weeks, femora were evaluated by radiography, microcomputed tomography (muCT), histology, and biomechanical testing. Six weeks after implantation of BMP-2-activated muscle grafts, 100% of the bone defects were bridged, as documented by radiographs and muCT imaging, and showed formation of a neocortex, as evaluated by histology. Bone volumes of the femora repaired by BMP-2-transduced muscle were significantly (p = 0.006) higher compared with those of intact femora and the biomechanical stability was statistically indistinguishable. In contrast, control defects receiving no treatment, unmodified muscle, or GFP-transduced muscle did not heal. BMP-2 gene-activated muscle grafts are osteoregenerative composites that provide an expedited means of treating and subsequently healing large segmental bone defects.


Hand Surgery | 2001

Gene therapy for rheumatoid arthritis.

Jean Noel Gouze; Steven C. Ghivizzani; Elvire Gouze; Glyn D. Palmer; Oliver B. Betz; Paul D. Robbins; Christopher H. Evans; James H. Herndon

Advances in understanding the biology of rheumatoid arthritis (RA) have opened new therapeutic avenues. One of these, gene therapy, involves the delivery to patients of genes encoding anti-arthritic proteins. This approach has shown efficacy in animal models of RA, and the first human, phase I trial has just been successfully completed. Hand surgery featured prominently in this pioneering study, as a potentially anti-arthritic gene encoding the interleukin-1 receptor antagonist was transferred to the metacarpophalangeal joints of subjects with RA one week before total joint arthroplasty. This study has confirmed that it is possible to transfer genes safely to human joints. It should pave the way for additional application of gene therapy to arthritis and other orthopaedic conditions.


Archive | 2005

Gene Transfer Approaches to Enhancing Bone Healing

Oliver B. Betz; Mark S. Vrahas; Axel Baltzer; Jay R. Lieberman; Paul D. Robbins; Christopher H. Evans

Although bone is one of the few organs in the body that can heal spontaneously and restore function without scarring, it has been recognized since the time of Hippocrates that repair is not always satisfactory.Bone healing is inadequate when the loss of bone through, for example, tumor resection or traumatic injury, is extensive enough to produce a critical-sized defect.Healing may also be impaired in much smaller defects, and nonunion following fracture occurs in 5–10%of cases (1, 2, 3).


Scientific Reports | 2017

Osseous differentiation of human fat tissue grafts: From tissue engineering to tissue differentiation

Maryna Bondarava; Chiara Cattaneo; Bin Ren; Wolfgang E. Thasler; Volkmar Jansson; Peter Müller; Oliver B. Betz

Conventional bone tissue engineering approaches require isolation and in vitro propagation of autologous cells, followed by seeding on a variety of scaffolds. Those protracted procedures impede the clinical applications. Here we report the transdifferentiation of human fat tissue fragments retrieved from subcutaneous fat into tissue with bone characteristics in vitro without prior cell isolation and propagation. 3D collagen-I cultures of human fat tissue were cultivated either in growth medium or in osteogenic medium (OM) with or without addition of Bone Morphogenetic Proteins (BMPs) BMP-2, BMP-7 or BMP-9. Ca2+ depositions were observed after two weeks of osteogenic induction which visibly increased when either type of BMP was added. mRNA levels of alkaline phosphatase (ALP) and osteocalcin (OCN) increased when cultured in OM alone but addition of BMP-2, BMP-7 or BMP-9 caused significantly higher expression levels of ALP and OCN. Immunofluorescent staining for OCN, osteopontin and sclerostin supported the observed real-time-PCR data. BMP-9 was the most effective osteogenic inducer in this system. Our findings reveal that tissue regeneration can be remarkably simplified by omitting prior cell isolation and propagation, therefore removing significant obstacles on the way to clinical applications of much needed regeneration treatments.

Collaboration


Dive into the Oliver B. Betz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark S. Vrahas

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ryan M. Porter

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge