Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryan M. Porter is active.

Publication


Featured researches published by Ryan M. Porter.


Arthritis & Rheumatism | 2009

Interleukin-1β and tumor necrosis factor α inhibit chondrogenesis by human mesenchymal stem cells through NF-κB–dependent pathways†

N. Wehling; Glyn D. Palmer; Carmencita Pilapil; Fangjun Liu; James W. Wells; P. E. Müller; Christopher H. Evans; Ryan M. Porter

OBJECTIVE The differentiation of mesenchymal stem cells (MSCs) into chondrocytes provides an attractive basis for the repair and regeneration of articular cartilage. Under clinical conditions, chondrogenesis will often need to occur in the presence of mediators of inflammation produced in response to injury or disease. The purpose of this study was to examine the effects of 2 important inflammatory cytokines, interleukin-1beta (IL-1beta) and tumor necrosis factor alpha (TNFalpha), on the chondrogenic behavior of human MSCs. METHODS Aggregate cultures of MSCs recovered from the femoral intermedullary canal were used. Chondrogenesis was assessed by the expression of relevant transcripts by quantitative reverse transcription-polymerase chain reaction analysis and examination of aggregates by histologic and immunohistochemical analyses. The possible involvement of NF-kappaB in mediating the effects of IL-1beta was examined by delivering a luciferase reporter construct and a dominant-negative inhibitor of NF-kappaB (suppressor-repressor form of IkappaB [srIkappaB]) with adenovirus vectors. RESULTS Both IL-1beta and TNFalpha inhibited chondrogenesis in a dose-dependent manner. This was associated with a marked activation of NF-kappaB. Delivery of srIkappaB abrogated the activation of NF-kappaB and rescued the chondrogenic response. Although expression of type X collagen followed this pattern, other markers of hypertrophic differentiation responded differently. Matrix metalloproteinase 13 was induced by IL-1beta in a NF-kappaB-dependent manner. Alkaline phosphatase activity, in contrast, was inhibited by IL-1beta regardless of srIkappaB delivery. CONCLUSION Cell-based repair of lesions in articular cartilage will be compromised in inflamed joints. Strategies for enabling repair under these conditions include the use of specific antagonists of individual pyrogens, such as IL-1beta and TNFalpha, or the targeting of important intracellular mediators, such as NF-kappaB.


Journal of Orthopaedic Research | 2009

Osteogenic Potential of Reamer Irrigator Aspirator (RIA) Aspirate Collected from Patients Undergoing Hip Arthroplasty

Ryan M. Porter; Fangjun Liu; Carmencita Pilapil; Oliver B. Betz; Mark S. Vrahas; Mitchel B. Harris; Christopher H. Evans

Intramedullary nailing preceded by canal reaming is the current standard of treatment for long‐bone fractures requiring stabilization. However, conventional reaming methods can elevate intramedullary temperature and pressure, potentially resulting in necrotic bone, systemic embolism, and pulmonary complications. To address this problem, a reamer irrigator aspirator (RIA) has been developed that combines irrigation and suction for reduced‐pressure reaming with temperature modulation. Osseous particles aspirated by the RIA can be recovered by filtration for use as an autograft, but the flow‐through is typically discarded. The purpose of this study was to assess whether this discarded filtrate has osteogenic properties that could be used to enhance the total repair potential of aspirate. RIA aspirate was collected from five patients (ages 71–78) undergoing hip hemiarthroplasty. Osseous particles were removed using an open‐pore filter, and the resulting filtrate (230 ± 200 mL) was processed by Ficoll‐gradient centrifugation to isolate mononuclear cells (6.2 ± 5.2 × 106 cells/mL). The aqueous supernatant contained FGF‐2, IGF‐I, and latent TGF‐β1, but BMP‐2 was below the limit of detection. The cell fraction included culture plastic‐adherent, fibroblastic cells that displayed a surface marker profile indicative of mesenchymal stem cells and that could be induced along the osteogenic, adipogenic, and chondrogenic lineages in vitro. When compared to outgrowth cells from the culture of osseous particles, filtrate cells were more sensitive to seeding density during osteogenic culture but had similar capacity for chondrogenesis. These results suggest using RIA aspirate to develop improved, clinically expeditious, cost‐effective technologies for accelerating the healing of bone and other musculoskeletal tissues.


Journal of Cellular Biochemistry | 2003

Effect of dexamethasone withdrawal on osteoblastic differentiation of bone marrow stromal cells.

Ryan M. Porter; William R. Huckle; Aaron S. Goldstein

Dexamethasone is capable of directing osteoblastic differentiation of bone marrow stromal cells (BMSCs) in vitro, but its effects are not lineage‐specific, and sustained exposure has been shown to down‐regulate collagen synthesis and induce maturation of an adipocyte subpopulation within BMSC cultures. Such side effects might be reduced if dexamethasone is applied in a regimented manner, but the discrete steps in osteoblastic maturation that are stimulated by dexamethasone are not known. To examine this, dexamethasone was added to medium to initiate differentiation of rat BMSCs cultures and then removed after a varying number of days. Cell layers were analyzed for cell number, rate of collagen synthesis, expression of osteocalcin (OC), bone sialoprotein (BSP) and lipoprotein lipase (LpL), and matrix mineralization. Withdrawal of dexamethasone at 3 and 10 days was found to enhance cell number relative to continuous exposure, but did not affect to decrease collagen synthesis slightly. Late markers of osteoblastic differentiation, BSP expression and matrix mineralization, were also sensitive to dexamethasone and increased systematically with exposure while LpL systematically decreased. These results indicate that dexamethasone acts at both early and late stages to direct proliferative osteoprogenitor cells toward terminal maturation. J. Cell. Biochem. 90: 13–22, 2003.


Gene Therapy | 2008

Ex vivo adenoviral transfer of bone morphogenetic protein 12 (BMP-12) cDNA improves Achilles tendon healing in a rat model.

Martin Majewski; Oliver B. Betz; Peter E Ochsner; Fangjun Liu; Ryan M. Porter; Christopher H. Evans

The aim of our study was to evaluate the histological and biomechanical effects of BMP-12 gene transfer on the healing of rat Achilles tendons using a new approach employing a genetically modified muscle flap. Biopsies of autologous skeletal muscle were transduced with a type-five, first-generation adenovirus carrying the human BMP-12 cDNA (Ad.BMP-12) and surgically implanted around experimentally transected Achilles tendons in a rat model. The effect of gene transfer on healing was evaluated by mechanical and histological testing after 1, 2, 4 and 8 weeks. One week after surgery, the maximum failure load of the healing tendons was significantly increased in the BMP-12 group, compared with the controls, and the tendon stiffness was significantly higher at 1, 2 and 4 weeks. Moreover, the size of the rupture callus was increased in the presence of BMP-12 and there was evidence of accelerated remodeling of the lesion in response to BMP-12. Histological examination showed a much more organized and homogeneous pattern of collagen fibers at all time points in lesions treated with the BMP-12 cDNA muscle graft. Both single fibrils and the collagen fibers had a greater diameter, with a higher degree of collagen crimp than the collagen of the control groups. This was confirmed by sirius red staining in conjunction with polarized light microscopy, which showed a higher shift of small yellow-green fibers to strong yellow-orange fibers after 2, 4 and 8 weeks in the presence of BMP-12 cDNA. There was also an earlier shift from fibroblasts to fibrocytes within the healing tendon, with less fat cells present in the tendons of the BMP-12 group compared with the controls. Treatment with BMP-12 cDNA-transduced muscle grafts thus produced a promising acceleration and improvement of tendon healing, particularly influencing early tissue regeneration, leading to quicker recovery and improved biomechanical properties of the Achilles tendon. Further development of this approach could have clinical applications.


Journal of Biological Chemistry | 2013

Inflammatory Cytokines Induce a Unique Mineralizing Phenotype in Mesenchymal Stem Cells Derived from Human Bone Marrow

Elisabeth Ferreira; Ryan M. Porter; Nathalie Wehling; Regina P. O'Sullivan; Fangjun Liu; Adele L. Boskey; Daniel M. Estok; Mitchell B. Harris; Mark S. Vrahas; Christopher H. Evans; James W. Wells

Background: The effects of inflammation upon the biology of human mesenchymal stem cells are poorly understood. Results: IL-1β provoked massive hydroxyapatite deposition by inhibiting ectonucleotide pyrophosphatase. Cells did not express typical markers of osteoblasts or other mesenchymal lineages. Conclusion: Inflammation promotes mineralization by a novel mechanism. Significance: These data provide new insights into cytokine effects on mineralization of soft tissues. Bone marrow contains mesenchymal stem cells (MSCs) that can differentiate along multiple mesenchymal lineages. In this capacity they are thought to be important in the intrinsic turnover and repair of connective tissues while also serving as a basis for tissue engineering and regenerative medicine. However, little is known of the biological responses of human MSCs to inflammatory conditions. When cultured with IL-1β, marrow-derived MSCs from 8 of 10 human subjects deposited copious hydroxyapatite, in which authenticity was confirmed by Fourier transform infrared spectroscopy. Transmission electron microscopy revealed the production of fine needles of hydroxyapatite in conjunction with matrix vesicles. Alkaline phosphatase activity did not increase in response to inflammatory mediators, but PPi production fell, reflecting lower ectonucleotide pyrophosphatase activity in cells and matrix vesicles. Because PPi is the major physiological inhibitor of mineralization, its decline generated permissive conditions for hydroxyapatite formation. This is in contrast to MSCs treated with dexamethasone, where PPi levels did not fall and mineralization was fuelled by a large and rapid increase in alkaline phosphatase activity. Bone sialoprotein was the only osteoblast marker strongly induced by IL-1β; thus these cells do not become osteoblasts despite depositing abundant mineral. RT-PCR did not detect transcripts indicative of alternative mesenchymal lineages, including chondrocytes, myoblasts, adipocytes, ligament, tendon, or vascular smooth muscle cells. IL-1β phosphorylated multiple MAPKs and activated nuclear factor-κB (NF-κB). Certain inhibitors of MAPK and PI3K, but not NF-κB, prevented mineralization. The findings are of importance to soft tissue mineralization, tissue engineering, and regenerative medicine.


Frontiers in Bioscience | 2009

Regenerative medicine and tissue engineering in orthopaedic surgery.

Alan Ivković; Inga Marijanović; Damir Hudetz; Ryan M. Porter; Marko Pećina; Christopher H. Evans

Orthopedic surgery is going through a serious paradigm shift ; instead of simply replacing damaged tissues with prosthetic or allograft material, the aim is to regenerate them. This endeavor has generated the field of regenerative orthopaedics, an increasingly expanding area of research with hopes of providing new and better treatments for diseases and injuries affecting the musculoskeletal system. As part of this process, we are witnessing a substantial accumulation of new cellular and molecular insights into connective tissue function, coupled with emerging new concepts in stem cell biology and scaffolding technologies. Indeed, any successful strategy to regenerate musculoskeletal tissues can be portrayed as an intricate interplay between the three main constituents of the regenerative system: cells, environment and scaffolds. This review is not meant to be exhaustive and comprehensive, but aims to highlight concepts and key advances in the field of regenerative orthopaedics and tissue engineering, as well as to present current possibilities for clinical translation.Orthopedic surgery is going through a serious paradigm shift; instead of simply replacing damaged tissues with prosthetic or allograft material, the aim is to regenerate them. This endeavor has generated the field of regenerative orthopaedics, an increasingly expanding area of research with hopes of providing new and better treatments for diseases and injuries affecting the musculoskeletal system. As part of this process, we are witnessing a substantial accumulation of new cellular and molecular insights into connective tissue function, coupled with emerging new concepts in stem cell biology and scaffolding technologies. Indeed, any successful strategy to regenerate musculoskeletal tissues can be portrayed as an intricate interplay between the three main constituents of the regenerative system: cells, environment and scaffolds. This review is not meant to be exhaustive and comprehensive, but aims to highlight concepts and key advances in the field of regenerative orthopaedics and tissue engineering, as well as to present current possibilities for clinical translation.


International Orthopaedics | 2011

Autologous bone grafting on steroids: preliminary clinical results. A novel treatment for nonunions and segmental bone defects

Micah A. Miller; Alan Ivković; Ryan M. Porter; Mitchel B. Harris; Daniel M. Estok; R. Malcolm Smith; Christopher H. Evans; Mark S. Vrahas

Clinical management of delayed healing or nonunion of long bone fractures and segmental bone defects poses a substantial orthopaedic challenge. Surgical advances and bone tissue engineering are providing new avenues to stimulate bone growth in cases of bone loss and nonunion. The reamer-irrigator-aspirator (RIA) device allows surgeons to aspirate the medullary contents of long bones and use the progenitor-rich “flow-through” fraction in autologous bone grafting. Dexamethasone (DEX) is a synthetic steroid that has been shown to induce osteoblastic differentiation. A series of 13 patients treated with RIA bone grafting enhanced with DEX for nonunion or segmental defect was examined retrospectively to assess the quality of bony union and clinical outcomes. Despite the initial poor prognoses, promising results were achieved using this technique; and given the complexity of these cases the observed success is of great value and warrants controlled study into both standardisation of the procedure and concentration of the grafting material.


Arthritis Research & Therapy | 2012

Genetic mismatch affects the immunosuppressive properties of mesenchymal stem cells in vitro and their ability to influence the course of collagen-induced arthritis

Catherine Sullivan; J. Mary Murphy; Matthew D. Griffin; Ryan M. Porter; Christopher H. Evans; Cathal O'Flatharta; Georgina Shaw; Frank Barry

IntroductionThe immunological and homing properties of mesenchymal stem cells (MSCs) provide a potentially attractive treatment for arthritis. The objective of this study was to determine effects of genetic disparity on the immunosuppressive potential of MSCs in vitro and in vivo within collagen induced arthritis (CIA).MethodsThe ability of DBA/1, FVB and BALB/c MSC preparations to impact the cytokine release profile of CD3/CD28 stimulated DBA/1 T cells was assessed in vitro. The effect of systemically delivered MSCs on the progression of CIA and cytokine production was assessed in vivo.ResultsAll MSC preparations suppressed the release of TNFα and augmented the secretion of IL-4 and IL-10 by stimulated DBA/1 T-cells. However, assessment of the ratio of IFNγ to IL-4 production indicated that the more genetically distant BALB/c MSCs had significantly less immunosuppressive capacity. Systemic delivery of BALB/c MSC resulted in an exacerbation of CIA disease score in vivo and a higher erosive disease burden. This was not seen after treatment with syngeneic or partially mismatched MSCs. An increase in serum levels of IL-1β was observed up to 20 days post treatment with allogeneic MSCs. An initial elevation of IL-17 in these treatment groups persisted in those treated with fully mismatched BALB/c MSCs. Over the course of the study, there was a significant suppression of serum IL-17 levels in groups treated with syngeneic MSCs.ConclusionsThese data demonstrate a significant difference in the immunosuppressive properties of syngeneic and allogeneic MSCs in vitro and in vivo, which needs to be appreciated when developing MSC based therapies for inflammatory arthritis.


Cartilage | 2013

Effects of Dexamethasone on Mesenchymal Stromal Cell Chondrogenesis and Aggrecanase Activity: Comparison of Agarose and Self-Assembling Peptide Scaffolds.

Emily M. Florine; R.E. Miller; Ryan M. Porter; Christopher H. Evans; Bodo Kurz; Alan J. Grodzinsky

Objective: Dexamethasone (Dex) is a synthetic glucocorticoid that has pro-anabolic and anticatabolic effects in cartilage tissue engineering systems, though the mechanisms by which these effects are mediated are not well understood. We tested the hypothesis that the addition of Dex to chondrogenic medium would affect matrix production and aggrecanase activity of human and bovine bone marrow stromal cells (BMSCs) cultured in self-assembling peptide and agarose hydrogels. Design: We cultured young bovine and adult human BMSCs in (RADA)4 self-assembling peptide and agarose hydrogels in medium containing TGF-β1±Dex and analyzed extracellular matrix composition, aggrecan cleavage products, and the effects of the glucocorticoid receptor antagonist RU-486 on proteoglycan content, synthesis, and catabolic processing. Results: Dex improved proteoglycan synthesis and retention in agarose hydrogels seeded with young bovine cells but decreased proteoglycan accumulation in peptide scaffolds. These effects were mediated by the glucocorticoid receptor. Adult human BMSCs showed minimal matrix accumulation in agarose, but accumulated ~50% as much proteoglycan and collagen as young bovine BMSCs in peptide hydrogels. Dex reduced aggrecanase activity in (RADA)4 and agarose hydrogels, as measured by anti-NITEGE Western blotting, for both bovine and human BMSC-seeded gels. Conclusions: The effects of Dex on matrix production are dependent on cell source and hydrogel identity. This is the first report of Dex reducing aggrecanase activity in a tissue engineering culture system.


Journal of Orthopaedic Research | 2012

Evaluation of BMP-2 gene-activated muscle grafts for cranial defect repair

Fangjun Liu; Ryan M. Porter; James W. Wells; Vaida Glatt; Carmencita Pilapil; Christopher H. Evans

Large, osseous, segmental defects heal poorly. Muscle has a propensity to form bone when exposed to an osteogenic stimulus such as that provided by transfer and expression of cDNA encoding bone morphogenetic protein‐2 (BMP‐2). The present study evaluated the ability of genetically modified, autologous muscle to heal large cranial defects in rats. Autologous grafts (8 mm × 2 mm) were punched from the biceps femoris muscle and transduced intraoperatively with recombinant adenovirus vector containing human BMP‐2 or green fluorescent protein cDNA. While the muscle biopsies were incubating with the vector, a central parietal 8 mm defect was surgically created in the calvarium of the same animal. The gene‐activated muscle graft was then implanted into the cranial defect. After 8 weeks, crania were examined radiographically, histologically, and by micro‐computed tomography and dual energy X‐ray absorptiometry. Although none of the defects were completely healed in this time, muscle grafts expressing BMP‐2 deposited more than twice as much new bone as controls. Histology confirmed the anatomical integrity of the newly formed bone, which was comparable in thickness and mineral density to the original cranial bone. This study confirms the in vivo osteogenic properties of genetically modified muscle and suggests novel strategies for healing bone.

Collaboration


Dive into the Ryan M. Porter's collaboration.

Top Co-Authors

Avatar

James W. Wells

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan J. Grodzinsky

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vaida Glatt

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Elisabeth Ferreira

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Ambika G. Bajpayee

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge