Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Oliver Eiberger is active.

Publication


Featured researches published by Oliver Eiberger.


Robotics and Autonomous Systems | 2013

Variable impedance actuators: A review

Bram Vanderborght; Alin Albu-Schaeffer; Antonio Bicchi; Etienne Burdet; Darwin G. Caldwell; Raffaella Carloni; Manuel G. Catalano; Oliver Eiberger; Werner Friedl; Gowrishankar Ganesh; Manolo Garabini; Markus Grebenstein; Giorgio Grioli; Sami Haddadin; Hannes Höppner; Amir Jafari; Matteo Laffranchi; Dirk Lefeber; Florian Petit; Stefano Stramigioli; Nikos G. Tsagarakis; M. Van Damme; R. Van Ham; Ludo C. Visser; Sebastian Wolf

Variable Impedance Actuators (VIA) have received increasing attention in recent years as many novel applications involving interactions with an unknown and dynamic environment including humans require actuators with dynamics that are not well-achieved by classical stiff actuators. This paper presents an overview of the different VIAs developed and proposes a classification based on the principles through which the variable stiffness and damping are achieved. The main classes are active impedance by control, inherent compliance and damping actuators, inertial actuators, and combinations of them, which are then further divided into subclasses. This classification allows for designers of new devices to orientate and take inspiration and users of VIAs to be guided in the design and implementation process for their targeted application.


international conference on robotics and automation | 2011

The DLR hand arm system

Markus Grebenstein; Alin Albu-Schäffer; Thomas Bahls; Maxime Chalon; Oliver Eiberger; Werner Friedl; Robin Gruber; Sami Haddadin; Ulrich Hagn; Robert Haslinger; Hannes Höppner; Stefan Jörg; Mathias Nickl; Alexander Nothhelfer; Florian Petit; Josef Reill; Nikolaus Seitz; Sebastian Wolf; Tilo Wüsthoff; Gerhard Hirzinger

An anthropomorphic hand arm system using variable stiffness actuation has been developed at DLR. It is aimed to reach its human archetype regarding size, weight and performance. The main focus of our development is put on robustness, dynamic performance and dexterity. Therefore, a paradigm change from impedance controlled, but mechanically stiff joints to robots using intrinsic variable compliance joints is carried out.


ieee-ras international conference on humanoid robots | 2006

A Humanoid Two-Arm System for Dexterous Manipulation

Christian Ott; Oliver Eiberger; Werner Friedl; Berthold Bäuml; Ulrich Hillenbrand; Christoph Borst; Alin Albu-Schäffer; Bernhard Brunner; Heiko Hirschmüller; Simon Kielhöfer; Rainer Konietschke; Michael Suppa; Franziska Zacharias; Gerhard Hirzinger

This paper presents a humanoid two-arm system developed as a research platform for studying dexterous two-handed manipulation. The system is based on the modular DLR-Lightweight-Robot-III and the DLR-Hand-II. Two arms and hands are combined with a three degrees-of-freedom movable torso and a visual system to form a complete humanoid upper body. In this paper we present the design considerations and give an overview of the different sub-systems. Then, we describe the requirements on the software architecture. Moreover, the applied control methods for two-armed manipulation and the vision algorithms used for scene analysis are discussed


international conference on robotics and automation | 2011

The DLR FSJ: Energy based design of a variable stiffness joint

Sebastian Wolf; Oliver Eiberger; Gerd Hirzinger

Bringing mechanically compliant joints to robots is in the focus of interest world wide, especially in the humanoid robotics community. Variable Stiffness Joints (VSJ) promise to gain a high performing and robust robotic system. The presented DLR Floating Spring Joint (FSJ) is a VSJ module designed for the first 4 axes of the anthropomorphic DLR Hand Arm System. The DLR Hand Arm System aims to match the skills of its natural archetype. For this purpose, the joints have to be extremely compact to fit into the arm. At the same time they require a high power density in order to approximate the human arm skills. The new DLR FSJ is designed completely from an energy based point of view. This addresses not only energy efficient components and low friction design, but also that the potential energy of the spring is used as good as possible. A demonstration of robustness is given by the investigation of a blunt impact to the tip of the arm.


international conference on robotics and automation | 2010

On joint design with intrinsic variable compliance: derivation of the DLR QA-Joint

Oliver Eiberger; Sami Haddadin; Michael Weis; Alin Albu-Schäffer; Gerd Hirzinger

In this paper we introduce a classification of intrinsically compliant joint mechanisms. Furthermore, we outline design considerations for realizing such devices in order to match the requirements for robust and performant actuation. Based on this elaboration, a new design concept is presented, the DLR QA-Joint. Its performance is investigated by various experiments, covering velocity increase using the elastic energy, joint protection capabilities, and control performance.


ieee-ras international conference on humanoid robots | 2014

Overview of the torque-controlled humanoid robot TORO

Johannes Englsberger; Alexander Werner; Christian Ott; Bernd Henze; Maximo A. Roa; Gianluca Garofalo; Robert Burger; Alexander Beyer; Oliver Eiberger; Korbinian Schmid; Alin Albu-Schäffer

This paper gives an overview on the torque-controlled humanoid robot TORO, which has evolved from the former DLR Biped. In particular, we describe its mechanical design and dimensioning, its sensors, electronics and computer hardware. Additionally, we give a short introduction to the walking and multi-contact balancing strategies used for TORO.


ieee-ras international conference on humanoid robots | 2010

Development of a biped robot with torque controlled joints

Christian Ott; Christoph Baumgärtner; Johannes Mayr; Matthias Fuchs; Robert Burger; Dongheui Lee; Oliver Eiberger; Alin Albu-Schäffer; Markus Grebenstein; Gerd Hirzinger

This paper gives an overview of the development of a novel biped walking machine. The robot is designed as an experimental system for studying biped locomotion based on torque controlled joints. As an underlying drive technology, the torque controlled joint units of the DLR-KUKA-Lightweight-Robot are employed. The relevant design choices for using this technology in a biped robot with integrated joint torque sensors are highlighted and some first experimental results using a conventional ZMP based control scheme are discussed.


international conference on robotics and automation | 2010

Dynamic modelling and control of variable stiffness actuators

Alin Albu-Schäffer; Sebastian Wolf; Oliver Eiberger; Sami Haddadin; Florian Petit; Maxime Chalon

After briefly summarizing the mechanical design of the two joint prototypes for the new DLR variable compliance arm, the paper exemplifies the dynamic modelling of one of the prototypes and proposes a generic variable stiffness joint model for nonlinear control design. Based on this model, the design of a simple, gain scheduled state feedback controller for active vibration damping of the mechanically very weakly damped joint is presented. Moreover, the computation of the motor reference values out of the desired stiffness and position is addressed. Finally, simulation and experimental results validate the proposed methods.


intelligent robots and systems | 2010

New insights concerning intrinsic joint elasticity for safety

Sami Haddadin; Alin Albu-Schäffer; Oliver Eiberger; Gerd Hirzinger

In this paper we present various new insights on the effect intrinsic joint elasticity has on safety in pHRI. We address the fact that the intrinsic safety of elastic mechanisms has been discussed rather one sided in favor of this new designs and intend to give a more differentiated view on the problem. An important result is that intrinsic joint elasticity does not reduce the Head Injury Criterion or impact forces compared to conventional actuation with some considerable elastic behavior in the joint, if considering full scale robots. We also elaborate conditions under which intrinsically compliant actuation is potentially more dangerous than rigid one. Furthermore, we present collision detection and reaction schemes for such mechanisms and verify their effectiveness experimentally.


IEEE-ASME Transactions on Mechatronics | 2016

Variable Stiffness Actuators: Review on Design and Components

Sebastian Wolf; Giorgio Grioli; Oliver Eiberger; Werner Friedl; Markus Grebenstein; Hannes Höppner; Etienne Burdet; Darwin G. Caldwell; Raffaella Carloni; Manuel G. Catalano; Dirk Lefeber; Stefano Stramigioli; Nikos G. Tsagarakis; Michaël Van Damme; Ronald Van Ham; Bram Vanderborght; Ludo C. Visser; Antonio Bicchi; Alin Albu-Schäffer

Variable stiffness actuators (VSAs) are complex mechatronic devices that are developed to build passively compliant, robust, and dexterous robots. Numerous different hardware designs have been developed in the past two decades to address various demands on their functionality. This review paper gives a guide to the design process from the analysis of the desired tasks identifying the relevant attributes and their influence on the selection of different components such as motors, sensors, and springs. The influence on the performance of different principles to generate the passive compliance and the variation of the stiffness are investigated. Furthermore, the design contradictions during the engineering process are explained in order to find the best suiting solution for the given purpose. With this in mind, the topics of output power, potential energy capacity, stiffness range, efficiency, and accuracy are discussed. Finally, the dependencies of control, models, sensor setup, and sensor quality are addressed.

Collaboration


Dive into the Oliver Eiberger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge