Oliver Gressel
Niels Bohr Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Oliver Gressel.
The Astrophysical Journal | 2015
Oliver Gressel; Neal J. Turner; Richard P. Nelson; Colin P. McNally
Protoplanetary disks are believed to accrete onto their central T Tauri star because of magnetic stresses. Recently published shearing box simulations indicate that Ohmic resistivity, ambipolar diffusion and the Hall effect all play important roles in disk evolution. In the presence of a vertical magnetic field, the disk remains laminar between 1-5au, and a magnetocentrifugal disk wind forms that provides an important mechanism for removing angular momentum. Questions remain, however, about the establishment of a true physical wind solution in the shearing box simulations because of the symmetries inherent in the local approximation. We present global MHD simulations of protoplanetary disks that include Ohmic resistivity and ambipolar diffusion, where the time-dependent gas-phase electron and ion fractions are computed under FUV and X-ray ionization with a simplified recombination chemistry. Our results show that the disk remains laminar, and that a physical wind solution arises naturally in global disk models. The wind is sufficiently efficient to explain the observed accretion rates. Furthermore, the ionization fraction at intermediate disk heights is large enough for magneto-rotational channel modes to grow and subsequently develop into belts of horizontal field. Depending on the ionization fraction, these can remain quasi-global, or break-up into discrete islands of coherent field polarity. The disk models we present here show a dramatic departure from our earlier models including Ohmic resistivity only. It will be important to examine how the Hall effect modifies the evolution, and to explore the influence this has on the observational appearance of such systems, and on planet formation and migration.
Astronomy and Astrophysics | 2008
Oliver Gressel; Detlef Elstner; Udo Ziegler; Günther Rüdiger
Context. Supernovae are known to be the dominant energy source for driving turbulence in the interstellar medium. Yet, their effect on magnetic field amplification in spiral galaxies is still poorly understood. Previous analytical models, based on the evolution of isolated, non-interacting supernova remnants, predicted a dominant vertical pumping that would render dynamo action improbable. Aims. In the present work, we address the issue of vertical transport, which is thought to be the key process that inhibits dynamo action in the galactic context. We aim to demonstrate that supernova driving is a powerful mechanism to amplify galactic magnetic fields. Methods. We conduct direct numerical simulations in the framework of resistive magnetohydrodynamics. Our local box model of the interstellar medium comprises optically-thin radiative cooling, an external gravitational potential, and background shear. Dynamo coefficients for mean-field models are measured by means of passive test fields. Results. Our simulations show that supernova-driven turbulence in conjunction with shear leads to an exponential amplification of the mean magnetic field. We found turbulent pumping to be directed inward and approximately balanced by a galactic wind.
Monthly Notices of the Royal Astronomical Society | 2010
Oliver Gressel
Local shearing box simulations of stratified magnetorotational turbulence invariably exhibit cyclic field patterns which propagate away from the disc mid-plane. A common explanation for this is magnetic buoyancy. The recent analysis by Shi et al. however shows that the flow is buoyantly stable below one disc scaleheight H, necessitating an alternative explanation in this region. We here conduct and analyse direct numerical simulations to explain the observed behaviour by means of a mean-field description. Apart from the mean radial and azimuthal field, we monitor the small-scale current helicity, which we propose as a key indicator for saturation. Reconstructing the horizontally averaged field, we demonstrate that the problem can be reduced to a 1D induction equation. By means of the so-called test field method, we then determine the underlying closure parameters. Our analysis shows that, apart from a possible direct magnetorotational instability (MRI) dynamo, two distinct indirect dynamo mechanisms operate in the disc. This resolves the issue of the ‘wrong’ sign of the MRI dynamo effect. Finally, we use the obtained closure parameters to run a dynamically quenched dynamo model. This model approximately recovers the observed field patterns in the mean fields. Moreover, the model reproduces the prevailing parity and the distinct phase pattern in the small-scale current helicity. The latter property might open a potential route to understand the saturation of MRI induced turbulence.
The Astrophysical Journal | 2013
Oliver Gressel; Richard P. Nelson; Neal J. Turner; Udo Ziegler
We present global hydrodynamic (HD) and magnetohydrodynamic (MHD) simulations with mesh refinement of accreting planets embedded in protoplanetary disks (PPDs). The magnetized disk includes Ohmic r ...
Monthly Notices of the Royal Astronomical Society | 2012
Oliver Gressel; Richard P. Nelson; Neal J. Turner
Planetesimals embedded in a protoplanetary disc are stirred by gravitational torques exerted by density fluctuations in the surrounding turbulence. In particular, planetesimals in a disc supporting fully developed magnetorotational turbulence are readily excited to velocity dispersions above the threshold for catastrophic disruption, halting planet formation. We aim to examine the stirring of planetesimals lying instead in a magnetically decoupled mid-plane dead zone, stirred only by spiral density waves propagating out of the disc’s magnetically coupled turbulent surface layers. We extend previous studies to include a wider range of disc models, and explore the effects of varying the disc column density and external magnetic field strength. We measure the stochastic torques on swarms of test particles in three-dimensional resistive-magnetohydrodynamics stratified shearing-box calculations with ionization by stellar X-rays, cosmic rays, and recombination on dust grains. The strength of the stirring is found to be independent of the gas surface density, which is contrary to the increase with disc mass expected from a simple linear wave picture. The discrepancy arises from the shearing out of density waves as they propagate into the dead zone, resulting in density structures near the mid-plane that exert weaker stochastic torques on average. We provide a simple analytic fit to our numerically obtained torque amplitudes that accounts for this effect. The stirring, on the other hand, depends sensitively on the net vertical magnetic flux, up to a saturation level above which magnetic forces dominate in the turbulent layers. For the majority of our models, the equilibrium planetesimal velocity dispersions lie between the thresholds for disrupting strong and weak aggregates, suggesting that collision outcomes will depend on material properties. However, discs with relatively weak magnetic fields yield reduced stirring, and their dead zones provide safe havens even for the weakest planetesimals against collisional destruction.
Monthly Notices of the Royal Astronomical Society | 2011
Oliver Gressel; Richard P. Nelson; Neal J. Turner
. NJT was supported by the Jet Propulsion Laboratory, California Institute of Technology, the NASA Origins and Outer Planets programs, and the Alexander von Humboldt Foundation.
Monthly Notices of the Royal Astronomical Society | 2010
Henrik N. Latter; Sebastien Fromang; Oliver Gressel
Simulations of the magnetorotational instability (MRI) in ‘unstratified’ shearing boxes exhibit powerful coherent flows, whereby the fluid vertically splits into countermoving planar jets or ‘channels’. Channel flows correspond to certain axisymmetric linear MRI modes, and their preponderance follows from the remarkable fact that they are approximate non-linear solutions of the MHD equations in the limit of weak magnetic fields. We show in this paper, analytically and with one-dimensional numerical simulations, that this property is also shared by certain axisymmetric MRI modes in vertically stratified shearing boxes. These channel flows rapidly capture significant amounts of magnetic and kinetic energy, and thus are vulnerable to secondary shear instabilities. We examine these parasites in the vertically stratified context, and estimate the maximum amplitudes that channels attain before they are destroyed. These estimates suggest that a dominant channel flow will usually drive the discs magnetic field to thermal strengths. The prominence of these flows and their destruction place enormous demands on simulations, but channels in their initial stages also offer a useful check on numerical codes. These benchmarks are especially valuable given the increasing interest in the saturation of the stratified MRI. Lastly, we speculate on the potential connection between ‘run-away’ channel flows and outburst behaviour in protostellar and dwarf nova discs.
Astronomische Nachrichten | 2008
Oliver Gressel; Udo Ziegler; Detlef Elstner; Günther Rüdiger
Observations in polarized emission reveal the existence of large-scale coherent magnetic fields in a wide range of spiral galaxies. Radio-polarization data show that these fields are strongly inclined towards the radial direction, with pitch angles up to 35° and thus cannot be explained by differential rotation alone. Global dynamo models describe the generation of the radial magnetic field from the underlying turbulence via the so called α -effect. However, these global models still rely on crude assumptions about the small-scale turbulence. To overcome these restrictions we perform fully dynamical MHD simulations of interstellar turbulence driven by supernova explosions. From our simulations we extract profiles of the contributing diagonal elements of the dynamo α -tensor as functions of galactic height. We also measure the coefficients describing vertical pumping and find that the ratio between these two effects has been overestimated in earlier analytical work, where dynamo action seemed impossible. In contradiction to these models based on isolated remnants we always find the pumping to be directed inward. In addition we observe that depends on whether clustering in terms of superbubbles is taken into account. Finally, we apply a test field method to derive a quantitative measure of the turbulent magnetic diffusivity which we determine to be ∼2 kpckms–1. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
Astronomy and Astrophysics | 2014
Axel Brandenburg; Oliver Gressel; Sarah Jabbari; Nathan Kleeorin; Igor Rogachevskii
Context. Strongly stratified hydromagnetic turbulence has previously been found to produce magnetic flux concentrations if the domain is large enough compared with the size of turbulent eddies. Mean-field simulations (MFS) using parameterizations of the Reynolds and Maxwell stresses show a large-scale negative effective magnetic pressure instability and have been able to reproduce many aspects of direct numerical simulations (DNS) regarding growth rate, shape of the resulting magnetic structures, and their height as a function of magnetic field strength. Unlike the case of an imposed horizontal field, for a vertical one, magnetic flux concentrations of equipartition strength with the turbulence can be reached, resulting in magnetic spots that are reminiscent of sunspots. Aims. We determine under what conditions magnetic flux concentrations with vertical field occur and what their internal structure is. Methods. We use a combination of MFS, DNS, and implicit large-eddy simulations (ILES) to characterize the resulting magnetic flux concentrations in forced isothermal turbulence with an imposed vertical magnetic field. Results. Using DNS, we confirm earlier results that in the kinematic stage of the large-scale instability the horizontal wavelength of structures is about 10 times the density scale height. At later times, even larger structures are being produced in a fashion similar to inverse spectral transfer in helically driven turbulence. Using ILES, we find that magnetic flux concentrations occur for Mach numbers between 0.1 and 0.7. They occur also for weaker stratification and larger turbulent eddies if the domain is wide enough. Using MFS, the size and aspect ratio of magnetic structures are determined as functions of two input parameters characterizing the parameterization of the effective magnetic pressure. DNS, ILES, and MFS show magnetic flux tubes with mean-field energies comparable to the turbulent kinetic energy. These tubes can reach a length of about eight density scale heights. Despite being ≤1% equipartition strength, it is important that their lower part is included within the computational domain to achieve the full strength of the instability. Conclusions. The resulting vertical magnetic flux tubes are being confined by downflows along the tubes and corresponding inflow from the sides, which keep the field concentrated. Application to sunspots remains a viable possibility.
The Astrophysical Journal | 2015
Oliver Gressel; Martin E. Pessah
The formation and evolution of a wide class of astrophysical objects is governed by turbulent, magnetized accretion disks. Understanding their secular dynamics is of primary importance. Apart from enabling mass accretion via the transport of angular momentum, the turbulence affects the long-term evolution of the embedded magnetic flux, which in turn regulates the efficiency of the transport. In this paper, we take a comprehensive next step towards an effective mean-field model for turbulent astrophysical disks by systematically studying the key properties of magnetorotational turbulence in vertically-stratified, isothermal shearing boxes. This allows us to infer emergent properties of the ensuing chaotic flow as a function of the shear parameter as well as the amount of net-vertical flux. Using the test-field method, we furthermore characterize the mean-field dynamo coefficients that describe the long-term evolution of large-scale fields. We simultaneously infer the vertical shape and the spectral scale dependence of these closure coefficients, with the latter describing non-local contributions to the turbulent electromotive force. Based on this, we infer a scale-separation ratio of about ten for the large-scale dynamo. We finally determine scaling properties of the mean-field dynamo coefficients. The relevant component of the dynamo {\alpha} effect is found to scale linearly with the shear rate, as is the corresponding turbulent diffusion, {\eta}. Together, these scalings allow us to predict, in a quantitative manner, the cycle period of the well-known butterfly diagram. This lends new support to the importance of the {\alpha}{\Omega} mechanism in determining the evolution of large-scale magnetic fields in turbulent accretion disks.