Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Oliver Stegle is active.

Publication


Featured researches published by Oliver Stegle.


Nature | 2013

Transcriptome and genome sequencing uncovers functional variation in humans.

Tuuli Lappalainen; Michael Sammeth; Marc R. Friedländer; Peter A. C. 't Hoen; Jean Monlong; Manuel A. Rivas; Mar Gonzàlez-Porta; Natalja Kurbatova; Thasso Griebel; Pedro G. Ferreira; Matthias Barann; Thomas Wieland; Liliana Greger; M. van Iterson; Jonas Carlsson Almlöf; Paolo Ribeca; Irina Pulyakhina; Daniela Esser; Thomas Giger; Andrew Tikhonov; Marc Sultan; G. Bertier; Daniel G. MacArthur; Monkol Lek; Esther Lizano; Henk P. J. Buermans; Ismael Padioleau; Thomas Schwarzmayr; Olof Karlberg; Halit Ongen

Genome sequencing projects are discovering millions of genetic variants in humans, and interpretation of their functional effects is essential for understanding the genetic basis of variation in human traits. Here we report sequencing and deep analysis of messenger RNA and microRNA from lymphoblastoid cell lines of 462 individuals from the 1000 Genomes Project—the first uniformly processed high-throughput RNA-sequencing data from multiple human populations with high-quality genome sequences. We discover extremely widespread genetic variation affecting the regulation of most genes, with transcript structure and expression level variation being equally common but genetically largely independent. Our characterization of causal regulatory variation sheds light on the cellular mechanisms of regulatory and loss-of-function variation, and allows us to infer putative causal variants for dozens of disease-associated loci. Altogether, this study provides a deep understanding of the cellular mechanisms of transcriptome variation and of the landscape of functional variants in the human genome.


Nature | 2015

An integrated map of structural variation in 2,504 human genomes

Peter H. Sudmant; Tobias Rausch; Eugene J. Gardner; Robert E. Handsaker; Alexej Abyzov; John Huddleston; Zhang Y; Kai Ye; Goo Jun; Markus His Yang Fritz; Miriam K. Konkel; Ankit Malhotra; Adrian M. Stütz; Xinghua Shi; Francesco Paolo Casale; Jieming Chen; Fereydoun Hormozdiari; Gargi Dayama; Ken Chen; Maika Malig; Mark Chaisson; Klaudia Walter; Sascha Meiers; Seva Kashin; Erik Garrison; Adam Auton; Hugo Y. K. Lam; Xinmeng Jasmine Mu; Can Alkan; Danny Antaki

Structural variants are implicated in numerous diseases and make up the majority of varying nucleotides among human genomes. Here we describe an integrated set of eight structural variant classes comprising both balanced and unbalanced variants, which we constructed using short-read DNA sequencing data and statistically phased onto haplotype blocks in 26 human populations. Analysing this set, we identify numerous gene-intersecting structural variants exhibiting population stratification and describe naturally occurring homozygous gene knockouts that suggest the dispensability of a variety of human genes. We demonstrate that structural variants are enriched on haplotypes identified by genome-wide association studies and exhibit enrichment for expression quantitative trait loci. Additionally, we uncover appreciable levels of structural variant complexity at different scales, including genic loci subject to clusters of repeated rearrangement and complex structural variants with multiple breakpoints likely to have formed through individual mutational events. Our catalogue will enhance future studies into structural variant demography, functional impact and disease association.


Nature | 2011

Spontaneous epigenetic variation in the Arabidopsis thaliana methylome

Claude Becker; Jörg Hagmann; Jonas Müller; Daniel Koenig; Oliver Stegle; Karsten M. Borgwardt; Detlef Weigel

Heritable epigenetic polymorphisms, such as differential cytosine methylation, can underlie phenotypic variation. Moreover, wild strains of the plant Arabidopsis thaliana differ in many epialleles, and these can influence the expression of nearby genes. However, to understand their role in evolution, it is imperative to ascertain the emergence rate and stability of epialleles, including those that are not due to structural variation. We have compared genome-wide DNA methylation among 10 A. thaliana lines, derived 30 generations ago from a common ancestor. Epimutations at individual positions were easily detected, and close to 30,000 cytosines in each strain were differentially methylated. In contrast, larger regions of contiguous methylation were much more stable, and the frequency of changes was in the same low range as that of DNA mutations. Like individual positions, the same regions were often affected by differential methylation in independent lines, with evidence for recurrent cycles of forward and reverse mutations. Transposable elements and short interfering RNAs have been causally linked to DNA methylation. In agreement, differentially methylated sites were farther from transposable elements and showed less association with short interfering RNA expression than invariant positions. The biased distribution and frequent reversion of epimutations have important implications for the potential contribution of sequence-independent epialleles to plant evolution.


Nature | 2011

Multiple reference genomes and transcriptomes for Arabidopsis thaliana

Xiangchao Gan; Oliver Stegle; Jonas Behr; Joshua G. Steffen; Philipp Drewe; Katie L. Hildebrand; Rune Lyngsoe; Sebastian J. Schultheiss; Edward J. Osborne; Vipin T. Sreedharan; André Kahles; Regina Bohnert; Géraldine Jean; Paul S. Derwent; Paul J. Kersey; Eric J. Belfield; Nicholas P. Harberd; Eric Kemen; Christopher Toomajian; Paula X. Kover; Richard M. Clark; Gunnar Rätsch; Richard Mott

Genetic differences between Arabidopsis thaliana accessions underlie the plant’s extensive phenotypic variation, and until now these have been interpreted largely in the context of the annotated reference accession Col-0. Here we report the sequencing, assembly and annotation of the genomes of 18 natural A. thaliana accessions, and their transcriptomes. When assessed on the basis of the reference annotation, one-third of protein-coding genes are predicted to be disrupted in at least one accession. However, re-annotation of each genome revealed that alternative gene models often restore coding potential. Gene expression in seedlings differed for nearly half of expressed genes and was frequently associated with cis variants within 5 kilobases, as were intron retention alternative splicing events. Sequence and expression variation is most pronounced in genes that respond to the biotic environment. Our data further promote evolutionary and functional studies in A. thaliana, especially the MAGIC genetic reference population descended from these accessions.


Nature Biotechnology | 2015

Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells

Florian Buettner; Kedar Nath Natarajan; F Paolo Casale; Valentina Proserpio; Antonio Scialdone; Fabian J. Theis; Sarah A. Teichmann; John C. Marioni; Oliver Stegle

Recent technical developments have enabled the transcriptomes of hundreds of cells to be assayed in an unbiased manner, opening up the possibility that new subpopulations of cells can be found. However, the effects of potential confounding factors, such as the cell cycle, on the heterogeneity of gene expression and therefore on the ability to robustly identify subpopulations remain unclear. We present and validate a computational approach that uses latent variable models to account for such hidden factors. We show that our single-cell latent variable model (scLVM) allows the identification of otherwise undetectable subpopulations of cells that correspond to different stages during the differentiation of naive T cells into T helper 2 cells. Our approach can be used not only to identify cellular subpopulations but also to tease apart different sources of gene expression heterogeneity in single-cell transcriptomes.


PLOS Genetics | 2012

Patterns of cis regulatory variation in diverse human populations

Barbara E. Stranger; Stephen B. Montgomery; Antigone S. Dimas; Leopold Parts; Oliver Stegle; Catherine E. Ingle; Magda Sekowska; George Davey Smith; David E. Evans; Maria Gutierrez-Arcelus; Alkes L. Price; Towfique Raj; James Nisbett; Alexandra C. Nica; Claude Beazley; Richard Durbin; Panos Deloukas; Emmanouil T. Dermitzakis

The genetic basis of gene expression variation has long been studied with the aim to understand the landscape of regulatory variants, but also more recently to assist in the interpretation and elucidation of disease signals. To date, many studies have looked in specific tissues and population-based samples, but there has been limited assessment of the degree of inter-population variability in regulatory variation. We analyzed genome-wide gene expression in lymphoblastoid cell lines from a total of 726 individuals from 8 global populations from the HapMap3 project and correlated gene expression levels with HapMap3 SNPs located in cis to the genes. We describe the influence of ancestry on gene expression levels within and between these diverse human populations and uncover a non-negligible impact on global patterns of gene expression. We further dissect the specific functional pathways differentiated between populations. We also identify 5,691 expression quantitative trait loci (eQTLs) after controlling for both non-genetic factors and population admixture and observe that half of the cis-eQTLs are replicated in one or more of the populations. We highlight patterns of eQTL-sharing between populations, which are partially determined by population genetic relatedness, and discover significant sharing of eQTL effects between Asians, European-admixed, and African subpopulations. Specifically, we observe that both the effect size and the direction of effect for eQTLs are highly conserved across populations. We observe an increasing proximity of eQTLs toward the transcription start site as sharing of eQTLs among populations increases, highlighting that variants close to TSS have stronger effects and therefore are more likely to be detected across a wider panel of populations. Together these results offer a unique picture and resource of the degree of differentiation among human populations in functional regulatory variation and provide an estimate for the transferability of complex trait variants across populations.


Nature Reviews Genetics | 2015

Computational and analytical challenges in single-cell transcriptomics

Oliver Stegle; Sarah A. Teichmann; John C. Marioni

The development of high-throughput RNA sequencing (RNA-seq) at the single-cell level has already led to profound new discoveries in biology, ranging from the identification of novel cell types to the study of global patterns of stochastic gene expression. Alongside the technological breakthroughs that have facilitated the large-scale generation of single-cell transcriptomic data, it is important to consider the specific computational and analytical challenges that still have to be overcome. Although some tools for analysing RNA-seq data from bulk cell populations can be readily applied to single-cell RNA-seq data, many new computational strategies are required to fully exploit this data type and to enable a comprehensive yet detailed study of gene expression at the single-cell level.


PLOS Computational Biology | 2010

A Bayesian framework to account for complex non-genetic factors in gene expression levels greatly increases power in eQTL studies.

Oliver Stegle; Leopold Parts; Richard Durbin; John Winn

Gene expression measurements are influenced by a wide range of factors, such as the state of the cell, experimental conditions and variants in the sequence of regulatory regions. To understand the effect of a variable of interest, such as the genotype of a locus, it is important to account for variation that is due to confounding causes. Here, we present VBQTL, a probabilistic approach for mapping expression quantitative trait loci (eQTLs) that jointly models contributions from genotype as well as known and hidden confounding factors. VBQTL is implemented within an efficient and flexible inference framework, making it fast and tractable on large-scale problems. We compare the performance of VBQTL with alternative methods for dealing with confounding variability on eQTL mapping datasets from simulations, yeast, mouse, and human. Employing Bayesian complexity control and joint modelling is shown to result in more precise estimates of the contribution of different confounding factors resulting in additional associations to measured transcript levels compared to alternative approaches. We present a threefold larger collection of cis eQTLs than previously found in a whole-genome eQTL scan of an outbred human population. Altogether, 27% of the tested probes show a significant genetic association in cis, and we validate that the additional eQTLs are likely to be real by replicating them in different sets of individuals. Our method is the next step in the analysis of high-dimensional phenotype data, and its application has revealed insights into genetic regulation of gene expression by demonstrating more abundant cis-acting eQTLs in human than previously shown. Our software is freely available online at http://www.sanger.ac.uk/resources/software/peer/.


Nature Protocols | 2012

Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses

Oliver Stegle; Leopold Parts; Matias Piipari; John Winn; Richard Durbin

We present PEER (probabilistic estimation of expression residuals), a software package implementing statistical models that improve the sensitivity and interpretability of genetic associations in population-scale expression data. This approach builds on factor analysis methods that infer broad variance components in the measurements. PEER takes as input transcript profiles and covariates from a set of individuals, and then outputs hidden factors that explain much of the expression variability. Optionally, these factors can be interpreted as pathway or transcription factor activations by providing prior information about which genes are involved in the pathway or targeted by the factor. The inferred factors are used in genetic association analyses. First, they are treated as additional covariates, and are included in the model to increase detection power for mapping expression traits. Second, they are analyzed as phenotypes themselves to understand the causes of global expression variability. PEER extends previous related surrogate variable models and can be implemented within hours on a desktop computer.


Nature Methods | 2016

Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity.

Christof Angermueller; Stephen J. Clark; Heather J. Lee; Iain C. Macaulay; Mabel J Teng; Tim Xiaoming Hu; Felix Krueger; Sébastien A. Smallwood; Chris P. Ponting; Thierry Voet; Gavin Kelsey; Oliver Stegle; Wolf Reik

We report scM&T-seq, a method for parallel single-cell genome-wide methylome and transcriptome sequencing that allows for the discovery of associations between transcriptional and epigenetic variation. Profiling of 61 mouse embryonic stem cells confirmed known links between DNA methylation and transcription. Notably, the method revealed previously unrecognized associations between heterogeneously methylated distal regulatory elements and transcription of key pluripotency genes.

Collaboration


Dive into the Oliver Stegle's collaboration.

Top Co-Authors

Avatar

Francesco Paolo Casale

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

André Kahles

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Florian Buettner

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah A. Teichmann

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge