Oliver Zahn
Lawrence Berkeley National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Oliver Zahn.
The Astrophysical Journal | 2011
R. Keisler; C. L. Reichardt; K. A. Aird; B. A. Benson; L. E. Bleem; J. E. Carlstrom; C. L. Chang; H. M. Cho; T. M. Crawford; A. T. Crites; T. de Haan; M. Dobbs; J. P. Dudley; E. M. George; N. W. Halverson; G. P. Holder; W. L. Holzapfel; S. Hoover; Z. Hou; J. D. Hrubes; M. Joy; L. Knox; A. T. Lee; E. M. Leitch; M. Lueker; D. Luong-Van; J. J. McMahon; J. Mehl; S. S. Meyer; M. Millea
We present a measurement of the angular power spectrum of the cosmic microwave background (CMB) using data from the South Pole Telescope (SPT). The data consist of 790 square degrees of sky observed at 150 GHz during 2008 and 2009. Here we present the power spectrum over the multipole range 650 < ‘ < 3000, where it is dominated by primary CMB anisotropy. We combine this power spectrum with the power spectra from the seven-year Wilkinson Microwave Anisotropy Probe (WMAP) data release to constrain cosmological models. We nd that the SPT and WMAP data are consistent with each other and, when combined, are well t by a spatially at, CDM cosmological model. The SPT+WMAP constraint on the spectral index of scalar uctuations is ns = 0:9663 0:0112. We detect, at 5 signicance, the eect of gravitational lensing on the CMB power spectrum, and nd its amplitude to be consistent with the CDM cosmological model. We explore a number of extensions beyond the CDM model. Each extension is tested independently, although there are degeneracies between some of the extension parameters. We constrain the tensorto-scalar ratio to be r < 0:21 (95% CL) and constrain the running of the scalar spectral index to be dns=d lnk = 0:024 0:013. We strongly detect the eects of primordial helium and neutrinos on the CMB; a model without helium is rejected at 7.7 , while a model without neutrinos is rejected at 7.5 . The primordial helium abundance is measured to be Yp = 0:296 0:030, and the eective number of relativistic species is measured to be Ne = 3:85 0:62. The constraints on these models are strengthened when the CMB data are combined with measurements of the Hubble constant and the baryon acoustic oscillation feature. Notable improvements include ns = 0:9668 0:0093, r < 0:17 (95% CL), and Ne = 3:86 0:42. The SPT+WMAP data show a mild preference for low power in the CMB damping tail, and while this preference may be accommodated by models that have a negative spectral running, a high primordial helium abundance, or a high eective number of relativistic species, such models are disfavored by the abundance of low-redshift galaxy clusters. Subject headings: cosmology { cosmology:cosmic microwave background { cosmology: observations { large-scale structure of universe
The Astrophysical Journal | 2006
Matthew McQuinn; Oliver Zahn; Matias Zaldarriaga; Lars Hernquist; Steven R. Furlanetto
A number of radio interferometers are currently being planned or constructed to observe 21 cm emission from reionization. Not only will such measurements provide a detailed view of that epoch, but, since the 21 cm emission also traces the distribution of matter in the universe, this signal can be used to constrain cosmological parameters. The sensitivity of an interferometer to the cosmological information in the signal may depend on how precisely the angular dependence of the 21 cm three-dimensional power spectrum can be measured. Using an analytic model for reionization, we quantify all the effects that break the spherical symmetry of the three-dimensional 21 cm power spectrum. We find that upcoming observatories will be sensitive to the 21 cm signal over a wide range of scales, from larger than 100 to as small as 1 comoving Mpc. Next, we consider three methods to measure cosmological parameters from the signal: (1) direct fitting of the density power spectrum to the signal, (2) using only the velocity field fluctuations in the signal, and (3) looking at the signal at large enough scales that all fluctuations trace the density field. With the foremost method, the first generation of 21 cm observations should moderately improve existing constraints on cosmological parameters for certain low-redshift reionization scenarios, and a 2 yr observation with the second-generation interferometer MWA5000 in combination with the CMB telescope Planck could improve constraints on Ω_w, Ω_(m)h^2, Ω_(b)h^2, Ω_ν, n_s, and α_s. If the universe is substantially ionized by z ~ 12 or if spin temperature fluctuations are important, we show that it will be difficult to place competitive constraints on cosmological parameters with any of the considered methods.
Monthly Notices of the Royal Astronomical Society | 2007
Matthew McQuinn; Adam Lidz; Oliver Zahn; Lars Hernquist; Matias Zaldarriaga
It is possible that the properties of H II regions during reionization depend sensitively on many poorly constrained quantities [the nature of the ionizing sources, the clumpiness of the gas in the intergalactic medium (IGM), the degree to which photoionizing feedback suppresses the abundance of low-mass galaxies, etc.], making it extremely difficult to interpret upcoming observations of this epoch. We demonstrate that the actual situation is more encouraging, using a suite of radiative transfer simulations, post-processed on outputs from a 1024 3 , 94-Mpc N-body simulation. Analytic prescriptions are used to incorporate small-scale structures that affect reionization, yet remain unresolved in the N-body simulation. We show that the morphology of the H II regions for reionization by POPII-like stars is most dependent on the global ionization fraction x i . Changing other parameters by an order of magnitude for fixed x i often results in similar bubble sizes and shapes. The next most important dependence is on the properties of the ionizing sources. The rarer the sources, the larger and more spherical the H II regions become. The typical bubble size can vary by as much as a factor of 4 at fixed x i between different possible source prescriptions. The final relevant factor is the abundance of minihaloes or of Lyman-limit systems. These systems suppress the largest bubbles from growing, and the magnitude of this suppression depends on the thermal history of the gas as well as the rate at which these systems are photo-evaporated. We find that neither source suppression owing to photo-heating nor small-scale gas clumping significantly affects the large-scale structure of the H II regions, with the ionization fraction power spectrum at fixed x i differing by less than 20 per cent for k < 5 Mpc -1 between all the source suppression and clumping models we consider. Analytic models of reionization are successful at predicting many of the features seen in our simulations. We discuss how observations of the 21-cm line with the Mileura Widefield Array (MWA) and the Low Frequency Array (LOFAR) can constrain properties of reionization, and we study the effect patchy reionization has on the statistics of Lyα emitting galaxies.
The Astrophysical Journal | 2007
Oliver Zahn; Adam Lidz; Matthew McQuinn; Lars Hernquist; Matias Zaldarriaga; Steven R. Furlanetto
We present results from a large volume simulation of hydrogen reionization. We combine 3D radiative transfer calculations and an N-body simulation, describing structure formation in the intergalactic medium, to detail the growth of H II regions around high-redshift galaxies. Our simulation tracks 10243 dark matter particles, in a box of comoving side length 65.6 Mpc h-1. This large volume allows us to accurately characterize the size distribution of H II regions throughout most of the reionization process. At the same time, our simulation resolves many of the small galaxies likely responsible for reionization. It confirms a picture anticipated by analytic models: H II regions grow collectively around highly clustered sources and have a well-defined characteristic size, which evolves from a sub-Mpc scale at the beginning of reionization to R > 10 Mpc toward the end. We present a detailed statistical description of our results and compare them with a numerical scheme based on the analytic model by Furlanetto and coworkers. We find that the analytic calculation reproduces the size distribution of H II regions and the 21 cm power spectrum of the radiative transfer simulation remarkably well. The ionization field from the simulation, however, has more small-scale structure than the analytic calculation, owing to Poisson scatter in the simulated abundance of galaxies on small scales. We propose and validate a simple scheme to incorporate this scatter into our calculations. Our results suggest that analytic calculations are sufficiently accurate to aid in predicting and interpreting the results of future 21 cm surveys. In particular, our fast numerical scheme is useful for forecasting constraints from future 21 cm surveys and in constructing mock surveys to test data analysis procedures.
Physical Review D | 2008
Yi Mao; Max Tegmark; Matthew McQuinn; Matias Zaldarriaga; Oliver Zahn
There is growing interest in using 3-dimensional neutral hydrogen mapping with the redshifted 21 cm line as a cosmological probe. However, its utility depends on many assumptions. To aid experimental planning and design, we quantify how the precision with which cosmological parameters can be measured depends on a broad range of assumptions, focusing on the 21 cm signal from
The Astrophysical Journal | 2008
Adam Lidz; Oliver Zahn; Matthew McQuinn; Matias Zaldarriaga; Lars Hernquist
6lzl20
The Astrophysical Journal | 2005
Matthew McQuinn; Steven R. Furlanetto; Lars Hernquist; Oliver Zahn; Matias Zaldarriaga
. We cover assumptions related to modeling of the ionization power spectrum, to the experimental specifications like array layout and detector noise, to uncertainties in the reionization history, and to the level of contamination from astrophysical foregrounds. We derive simple analytic estimates for how various assumptions affect an experiments sensitivity, and we find that the modeling of reionization is the most important, followed by the array layout. We present an accurate yet robust method for measuring cosmological parameters that exploits the fact that the ionization power spectra are rather smooth functions that can be accurately fit by 7 phenomenological parameters. We find that for future experiments, marginalizing over these nuisance parameters may provide constraints almost as tight on the cosmology as if 21 cm tomography measured the matter power spectrum directly. A future square kilometer array optimized for 21 cm tomography could improve the sensitivity to spatial curvature and neutrino masses by up to 2 orders of magnitude, to
The Astrophysical Journal | 2009
Adam Lidz; Oliver Zahn; Steven R. Furlanetto; Matthew McQuinn; Lars Hernquist; Matias Zaldarriaga
\ensuremath{\Delta}{\ensuremath{\Omega}}_{k}\ensuremath{\approx}0.0002
Proceedings of SPIE | 2012
Takayuki Tomaru; M. Hazumi; Adrian T. Lee; Peter A. R. Ade; K. Arnold; D. Barron; J. Borrill; S. C. Chapman; Y. Chinone; M. Dobbs; J. Errard; G. Fabbian; A. Ghribi; William F. Grainger; N. W. Halverson; M. Hasegawa; K. Hattori; W. L. Holzapfel; Y. Inoue; Sou Ishii; Yuta Kaneko; Brian Keating; Z. Kermish; N. Kimura; Ted Kisner; William Kranz; F. Matsuda; Tomotake Matsumura; H. Morii; Michael J. Myers
and
Physical Review D | 2009
Roland de Putter; Oliver Zahn; Eric V. Linder
\ensuremath{\Delta}{m}_{\ensuremath{\nu}}\ensuremath{\approx}0.007\text{ }\text{ }\mathrm{eV}