Olivia Amanda García-Garduño
Instituto Politécnico Nacional
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Olivia Amanda García-Garduño.
Journal of Applied Clinical Medical Physics | 2008
Olivia Amanda García-Garduño; Miguel Angel Celis; José M. Lárraga-Gutiérrez; Sergio Moreno-Jiménez; Arnulfo Martínez-Dávalos; M. Rodríguez-Villafuerte
Micro‐multileaf collimator systems coupled to linear accelerators for radioneurosurgery treatments require a rigorous dosimetric characterization in order to be used in 3D conformal and intensity modulated stereotactic radiosurgery and radiotherapy applications. This characterization involves high precision measurements of leaf transmission, leakage and beam penumbra through the collimation system and requires the use of detectors with high spatial resolution, high sensitivity and practically no energy dependence. In this work the use of GafChromic EBT radiochromic film to measure the basic dosimetric properties of the m3‐mMLC (BrainLAB, Germany) micro‐multileaf collimator system integrated to a 6 MV linear accelerator, is reported. Results show that average values of transmission and leakage radiation are 0.93±0.05% and 1.08±0.08%, respectively. The 80–20% beam penumbra were found to be 2.26±0.11 mm along the leaf side (perpendicular to leaf motion) and 2.31±0.11 mm along the leaf end (parallel to leaf motion) using square field sizes ranging from 9.1 to 1.8 cm. These measurements are in agreement with values reported in the literature for the same type of mMLC using different radiation detectors. PACS number: 87.56.N‐
Radiotherapy and Oncology | 2010
Olivia Amanda García-Garduño; José M. Lárraga-Gutiérrez; M. Rodríguez-Villafuerte; Arnulfo Martínez-Dávalos; Miguel Angel Celis
This work reports the use of both GafChromic EBT film immersed in a water phantom and Monte Carlo (MC) simulations for small photon beam stereotactic radiosurgery dosimetry. Circularly collimated photon beams with diameters in the 4-20 mm range of a dedicated 6 MV linear accelerator (Novalis, BrainLAB, Germany) were used to perform off-axis ratios, tissue maximum ratios and total scatter factors measurements, and MC simulations. GafChromic EBT film data show an excellent agreement with MC results (<2.7%) for all measured quantities.
Medical Physics | 2012
José M. Lárraga-Gutiérrez; Diana García-Hernández; Olivia Amanda García-Garduño; Olga Olinca Galván de la Cruz; Paola Ballesteros-Zebadúa; Karina P. Esparza-Moreno
PURPOSE Radiosurgery uses small fields and high-radiation doses to treat intra- and extracranial lesions in a single session. The lack of a lateral electronic equilibrium and the presence of high-dose gradients in these fields are challenges for adequate measurements. The availability of radiation detectors with the high spatial resolution required is restricted to only a few. Stereotactic diodes and EBT radiochromic films have been demonstrated to be good detectors for small-beam dosimetry. Because the stereotactic diode is the standard measurement for the dosimetry of radiosurgical beams, the goal of this work was to perform measurements with the radiochromic film Gafchromic(®) EBT2 and compare its results with a stereotactic diode. METHODS Total scatter factors, tissue maximum, and off-axis ratios from a 6 MV small photon beams were measured using EBT2 radiochromic film in a water phantom. The film-measured data were evaluated by comparing it with the data measured with a stereotactic field diode (IBA-Dosimetry). RESULTS The film and diode measurements had excellent agreement. The differences between the detectors were less than or equal to 2.0% for the tissue maximum and the off-axis ratios. However, for the total scatter factors, there were significant differences, up to 4.9% (relative to the reference field), for field sizes less than 1.0 cm. CONCLUSIONS This work found that the Gafchromic(®) EBT2 film is adequate for small photon beam measurements, particularly for tissue maximum and off-axis ratios. However, careful attention must be taken when measuring output factors of small beams below 1.0 cm due to the films energy dependence. The measurement differences may be attributable to the films active layer composition because EBT2 incorporates higher Z elements (i.e., bromide and potassium), hence revealing a potential energy dependence for the dosimetry of small photon beams.
Journal of Applied Clinical Medical Physics | 2016
Elsa Yazmín León Marroquín; José A. Herrera González; Miguel Ángel Camacho López; José E. Villarreal Barajas; Olivia Amanda García-Garduño
Radiochromic film has become an important tool to verify dose distributions for intensity-modulated radiotherapy (IMRT) and quality assurance (QA) procedures. A new radiochromic film model, EBT3, has recently become available, whose composition and thickness of the sensitive layer are the same as those of previous EBT2 films. However, a matte polyester layer was added to EBT3 to prevent the formation of Newtons rings. Furthermore, the symmetrical design of EBT3 allows the user to eliminate side-orientation dependence. This film and the flatbed scanner, Epson Perfection V750, form a dosimetry system whose intrinsic characteristics were studied in this work. In addition, uncertainties associated with these intrinsic characteristics and the total uncertainty of the dosimetry system were determined. The analysis of the response of the radiochromic film (net optical density) and the fitting of the experimental data to a potential function yielded an uncertainty of 2.6%, 4.3%, and 4.1% for the red, green, and blue channels, respectively. In this work, the dosimetry system presents an uncertainty in resolving the dose of 1.8% for doses greater than 0.8 Gy and less than 6 Gy for red channel. The films irradiated between 0 and 120 Gy show differences in the response when scanned in portrait or landscape mode; less uncertainty was found when using the portrait mode. The response of the film depended on the position on the bed of the scanner, contributing an uncertainty of 2% for the red, 3% for the green, and 4.5% for the blue when placing the film around the center of the bed of scanner. Furthermore, the uniformity and reproducibility radiochromic film and reproducibility of the response of the scanner contribute less than 1% to the overall uncertainty in dose. Finally, the total dose uncertainty was 3.2%, 4.9%, and 5.2% for red, green, and blue channels, respectively. The above uncertainty values were obtained by minimizing the contribution to the total dose uncertainty of the film orientation and film homogeneity. PACS number(s): 87.53.Bn.Radiochromic film has become an important tool to verify dose distributions for intensity‐modulated radiotherapy (IMRT) and quality assurance (QA) procedures. A new radiochromic film model, EBT3, has recently become available, whose composition and thickness of the sensitive layer are the same as those of previous EBT2 films. However, a matte polyester layer was added to EBT3 to prevent the formation of Newtons rings. Furthermore, the symmetrical design of EBT3 allows the user to eliminate side‐orientation dependence. This film and the flatbed scanner, Epson Perfection V750, form a dosimetry system whose intrinsic characteristics were studied in this work. In addition, uncertainties associated with these intrinsic characteristics and the total uncertainty of the dosimetry system were determined. The analysis of the response of the radiochromic film (net optical density) and the fitting of the experimental data to a potential function yielded an uncertainty of 2.6%, 4.3%, and 4.1% for the red, green, and blue channels, respectively. In this work, the dosimetry system presents an uncertainty in resolving the dose of 1.8% for doses greater than 0.8 Gy and less than 6 Gy for red channel. The films irradiated between 0 and 120 Gy show differences in the response when scanned in portrait or landscape mode; less uncertainty was found when using the portrait mode. The response of the film depended on the position on the bed of the scanner, contributing an uncertainty of 2% for the red, 3% for the green, and 4.5% for the blue when placing the film around the center of the bed of scanner. Furthermore, the uniformity and reproducibility radiochromic film and reproducibility of the response of the scanner contribute less than 1% to the overall uncertainty in dose. Finally, the total dose uncertainty was 3.2%, 4.9%, and 5.2% for red, green, and blue channels, respectively. The above uncertainty values were obtained by minimizing the contribution to the total dose uncertainty of the film orientation and film homogeneity. PACS number(s): 87.53.Bn
Medical Physics | 2012
José M. Lárraga-Gutiérrez; Diana García-Hernández; Olivia Amanda García-Garduño; Olga Olinca Galván de la Cruz; Paola Ballesteros-Zebadúa; Karina P. Esparza-Moreno
PURPOSE Radiosurgery uses small fields and high-radiation doses to treat intra- and extracranial lesions in a single session. The lack of a lateral electronic equilibrium and the presence of high-dose gradients in these fields are challenges for adequate measurements. The availability of radiation detectors with the high spatial resolution required is restricted to only a few. Stereotactic diodes and EBT radiochromic films have been demonstrated to be good detectors for small-beam dosimetry. Because the stereotactic diode is the standard measurement for the dosimetry of radiosurgical beams, the goal of this work was to perform measurements with the radiochromic film Gafchromic(®) EBT2 and compare its results with a stereotactic diode. METHODS Total scatter factors, tissue maximum, and off-axis ratios from a 6 MV small photon beams were measured using EBT2 radiochromic film in a water phantom. The film-measured data were evaluated by comparing it with the data measured with a stereotactic field diode (IBA-Dosimetry). RESULTS The film and diode measurements had excellent agreement. The differences between the detectors were less than or equal to 2.0% for the tissue maximum and the off-axis ratios. However, for the total scatter factors, there were significant differences, up to 4.9% (relative to the reference field), for field sizes less than 1.0 cm. CONCLUSIONS This work found that the Gafchromic(®) EBT2 film is adequate for small photon beam measurements, particularly for tissue maximum and off-axis ratios. However, careful attention must be taken when measuring output factors of small beams below 1.0 cm due to the films energy dependence. The measurement differences may be attributable to the films active layer composition because EBT2 incorporates higher Z elements (i.e., bromide and potassium), hence revealing a potential energy dependence for the dosimetry of small photon beams.
Clinical Neurology and Neurosurgery | 2015
O.O. Galván De la Cruz; Paola Ballesteros-Zebadúa; Sergio Moreno-Jiménez; Miguel Angel Celis; Olivia Amanda García-Garduño
INTRODUCTION It is debatable whether pediatric patients diagnosed with arteriovenous malformations (AVMs) should be treated as adults. Several indexes to classify AVMs have been proposed in the literature, and most try to predict the outcome for each specific treatment. The indexes differ in the variables considered, but they are all based in adult populations. In this study, we analyzed the variables that influence the obliteration time and probability of occurrence in a Mexican pediatric population diagnosed with an AVM and treated with stereotactic radiosurgery (SRS). METHODS We analyzed 45 pediatric patients (<18 years) with a minimum follow-up of 10 months and a maximum of 112 months. We used logistic regression analysis and Kaplan-Meier curves to evaluate the influence of age, AVM volume, prescribed dose, minimum dose, maximum dose, time of follow-up, sex, previous hemorrhage, venous drainage, treatment technique, previous treatment and location. We also evaluated the predictive power of the following indexes: Spetzler-Martin, RBAS, or K index dose deviation. RESULTS We found that the radiation technique used may influence the obliteration occurrence (p=0.057). The data suggests that circular arcs are a more efficient treatment technique than dynamic arcs. However, no relationship of dose or volume with treatment technique could be found. Obliteration was also dependent on follow-up time and after three years of follow-up, the obliteration probability decreases (p=0.024). According to Kaplan-Meier analysis, the nidus obliteration time was related with the location according to the Spetzler-Martin index. If the nidus was located in a non-eloquent region, there was a tendency of a shorter obliteration time (p=0.071). CONCLUSION None of the previously proposed indexes for adults predict obliteration in this pediatric population. Treatment technique, eloquence and follow up time were the only variables that showed influence in obliteration. Since the highest probability of obliteration occurs during the first three years, if the nidus has not been obliterated after this time then another treatment option could be considered.
Physica Medica | 2014
José M. Lárraga-Gutiérrez; O.O. Galván de la Cruz; Olivia Amanda García-Garduño; Paola Ballesteros-Zebadúa
The multileaf collimator (MLC) is the standard device used to shape radiation beams for 3-d conformal and intensity-modulated radiation therapy (IMRT). Due to the inherent properties of MLC, there is a small amount of radiation transmitted through the leaves, called radiation transmission (RT). Accurate measurements of this radiation are required to commission and validate IMRT-capable treatment planning systems because this radiation may impact the dosimetry of IMRT-calculated dose distributions. This work compares several detectors in the measurement of RT for a micro-multileaf collimation system. The results show that there are statistically significant differences in the measured RT values between detectors from 3.5 to 12.5% for the same MLC model and less than 0.2% relative to the isocentre dose for an open reference field. However, although small in magnitude, these differences may impact the dosimetry of IMRT treatment planning by up to 1.78 Gy to the healthy tissue surrounding the target for a treatment of 60 Gy in 30 fractions. By the later, these differences must be included as a source of uncertainty in IMRT dose delivery. Also, it must be established which detector offers the most reliable results in the measurement of the RT by using Monte Carlo simulation methods.
Medical Dosimetry | 2013
Olga Olinca Galván de la Cruz; José M. Lárraga-Gutiérrez; Sergio Moreno-Jiménez; Olivia Amanda García-Garduño; Miguel Angel Celis
It is reported in the literature that the material used in an embolization of an arteriovenous malformation (AVM) can attenuate the radiation beams used in stereotactic radiosurgery (SRS) up to 10% to 15%. The purpose of this work is to assess the dosimetric impact of this attenuating material in the SRS treatment of embolized AVMs, using Monte Carlo simulations assuming clinical conditions. A commercial Monte Carlo dose calculation engine was used to recalculate the dose distribution of 20 AVMs previously planned with a pencil beam dose calculation algorithm. Dose distributions were compared using the following metrics: average, minimal and maximum dose of AVM, and 2D gamma index. The effect in the obliteration rate was investigated using radiobiological models. It was found that the dosimetric impact of the embolization material is less than 1.0 Gy in the prescription dose to the AVM for the 20 cases studied. The impact in the obliteration rate is less than 4.0%. There is reported evidence in the literature that embolized AVMs treated with SRS have low obliteration rates. This work shows that there are dosimetric implications that should be considered in the final treatment decisions for embolized AVMs.
Journal of Applied Clinical Medical Physics | 2013
Karina P. Esparza-Moreno; Olivia Amanda García-Garduño; Paola Ballesteros-Zebadúa; José M. Lárraga-Gutiérrez; Sergio Moreno-Jiménez; Miguel Ángel Celis-López
Trigeminal neuralgia (TN) is a chronic, episodic facial pain syndrome that can be extremely intense, and it occurs within the regions of the face that are innervated by the three branches of the trigeminal nerve. Stereotactic radiosurgery (SRS) is the least invasive procedure to treat TN. SRS uses narrow photon beams that require high spatial resolution techniques for their measurement. The use of radiographic or radiochromic films for small‐field dosimetry is advantageous because high spatial resolution and two‐dimensional dose measurements can be performed. Because these films have different properties, it is expected that the calculated dose distributions for TN patients will behave differently, depending on the detector used for the commissioning of the small photon beams. This work is based on two sets of commissioned data: one commissioned with X‐OMAT V2 film and one commissioned with EBT2 film. The calculated dose distributions for 23 TN patients were compared between the commissioning datasets. The variables observed were the differences in the half widths of the 35 and 40 Gy isodose lines (related to the entrance distance to the brainstem) and the volume of the brainstem that received a dose of 12 Gy or more (V12). The results of this comparison showed that there were statistically significant differences between the two calculated dose distributions. The magnitudes of these differences were up to 0.33 mm and 0.38 mm for the 35 and 40 Gy isodose lines. The corresponding difference for the V12 was up to 2.1 cc. It is clear that these differences may impact the treatment of TN patients, and then it must be important to perform this type of analysis when observing complication rates. Clinical reports on irradiation techniques for trigeminal neuralgia should consider that different detectors used for commissioning treatment planning systems might result in small but significant differences in dose distributions. PACS number: 87.55.km
Applied Radiation and Isotopes | 2016
Olivia Amanda García-Garduño; J.M. Lárraga-Gutiérrez; M. Rodríguez-Villafuerte; Arnulfo Martínez-Dávalos; T. Rivera-Montalvo
Radiochromic films are dosimeters with more favorable characteristics than other two-dimensional (2D) radiation detectors. Transmission film scanners using a linear charge-coupled device (CCD) array have a drawback of variation in response along the detector array, which may result in a nonuniform transmission of signal over the scanned image. This study uses 2D gamma index analysis to compare two methods for correcting the nonuniform response of EBT2: the first method was based on the new red:blue method proposed by the manufacturer (to compensate for small nonuniformities in the film coating) and the second method, proposed by Menegotti et al. (2008), was based on dose-dependent matrix correction factors. The gamma index analysis shows that both the methods are comparably accurate for all the criteria values used for evaluation (1 mm/1%, 2 mm/2%, 3 mm/3%). Centers around the world use both the methods to correct EBT2 local heterogeneities, but it is important to note that the former method has several advantages such as less time consumption and easy implementation.