Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olivia Sobczyk is active.

Publication


Featured researches published by Olivia Sobczyk.


The Journal of Physiology | 2013

Measuring cerebrovascular reactivity: what stimulus to use?

Jorn Fierstra; Olivia Sobczyk; Anne Battisti-Charbonney; Daniel M. Mandell; Julien Poublanc; Adrian P. Crawley; David J. Mikulis; James Duffin; J.A. Fisher

Abstract  Cerebrovascular reactivity is the change in cerebral blood flow in response to a vasodilatory or vasoconstrictive stimulus. Measuring variations of cerebrovascular reactivity between different regions of the brain has the potential to not only advance understanding of how the cerebral vasculature controls the distribution of blood flow but also to detect cerebrovascular pathophysiology. While there are standardized and repeatable methods for estimating the changes in cerebral blood flow in response to a vasoactive stimulus, the same cannot be said for the stimulus itself. Indeed, the wide variety of vasoactive challenges currently employed in these studies impedes comparisons between them. This review therefore critically examines the vasoactive stimuli in current use for their ability to provide a standard repeatable challenge and for the practicality of their implementation. Such challenges include induced reductions in systemic blood pressure, and the administration of vasoactive substances such as acetazolamide and carbon dioxide. We conclude that many of the stimuli in current use do not provide a standard stimulus comparable between individuals and in the same individual over time. We suggest that carbon dioxide is the most suitable vasoactive stimulus. We describe recently developed computer‐controlled MRI compatible gas delivery systems which are capable of administering reliable and repeatable vasoactive CO2 stimuli.


Journal of Cerebral Blood Flow and Metabolism | 2015

Assessing cerebrovascular reactivity abnormality by comparison to a reference atlas.

Olivia Sobczyk; Anne Battisti-Charbonney; Julien Poublanc; Adrian P. Crawley; Kevin Sam; Jorn Fierstra; Daniel M. Mandell; David J. Mikulis; James Duffin; Joseph A Fisher

Attribution of vascular pathophysiology to reductions in cerebrovascular reactivity (CVR) is confounded by subjective assessment and the normal variation between anatomic regions. This study aimed to develop an objective scoring assessment of abnormality. CVR was measured as the ratio of the blood-oxygen-level-dependent magnetic resonance signal response divided by an increase in CO2, standardized to eliminate variability. A reference normal atlas was generated by coregistering the CVR maps from 46 healthy subjects into a standard space and calculating the mean and standard deviation (s.d.) of CVR for each voxel. Example CVR studies from 10 patients with cerebral vasculopathy were assessed for abnormality, by normalizing each patients CVR to the same standard space as the atlas, and assigning a z-score to each voxel relative to the mean and s.d. of the corresponding atlas voxel. Z-scores were color coded and superimposed on their anatomic scans to form CVR z-maps. We found the CVR z-maps provided an objective evaluation of abnormality, enhancing our appreciation of the extent and distribution of pathophysiology compared with CVR maps alone. We concluded that CVR z-maps provide an objective, improved form of evaluation for comparisons of voxel-specific CVR between subjects, and across tests sites.


Frontiers in Neurology | 2016

Neuroimaging Assessment of Cerebrovascular Reactivity in Concussion: Current Concepts, Methodological Considerations, and Review of the Literature

Michael J. Ellis; Lawrence Ryner; Olivia Sobczyk; Jorn Fierstra; David J. Mikulis; Joseph A. Fisher; James Duffin; W. Alan C. Mutch

Concussion is a form of traumatic brain injury (TBI) that presents with a wide spectrum of subjective symptoms and few objective clinical findings. Emerging research suggests that one of the processes that may contribute to concussion pathophysiology is dysregulation of cerebral blood flow (CBF) leading to a mismatch between CBF delivery and the metabolic needs of the injured brain. Cerebrovascular reactivity (CVR) is defined as the change in CBF in response to a measured vasoactive stimulus. Several magnetic resonance imaging (MRI) techniques can be used as a surrogate measure of CBF in clinical and laboratory studies. In order to provide an accurate assessment of CVR, these sequences must be combined with a reliable, reproducible vasoactive stimulus that can manipulate CBF. Although CVR imaging currently plays a crucial role in the diagnosis and management of many cerebrovascular diseases, only recently have studies begun to apply this assessment tool in patients with concussion. In order to evaluate the quality, reliability, and relevance of CVR studies in concussion, it is important that clinicians and researchers have a strong foundational understanding of the role of CBF regulation in health, concussion, and more severe forms of TBI, and an awareness of the advantages and limitations of currently available CVR measurement techniques. Accordingly, in this review, we (1) discuss the role of CVR in TBI and concussion, (2) examine methodological considerations for MRI-based measurement of CVR, and (3) provide an overview of published CVR studies in concussion patients.


NeuroImage | 2015

The dynamics of cerebrovascular reactivity shown with transfer function analysis

James Duffin; Olivia Sobczyk; Adrian P. Crawley; Julien Poublanc; David J. Mikulis; Joseph A Fisher

Cerebrovascular reactivity (CVR) is often defined as the increase in cerebral blood flow (CBF) produced by an increase in carbon dioxide (CO2) and may be used clinically to assess the health of the cerebrovasculature. When CBF is estimated using blood oxygen level dependent (BOLD) magnetic resonance imaging, CVR values for each voxel can be displayed using a color scale mapped onto the corresponding anatomical scan. While these CVR maps therefore show the distribution of cerebrovascular reactivity, they only provide an estimate of the magnitude of the cerebrovascular response, and do not indicate the time course of the response; whether rapid or slow. Here we describe transfer function analysis (TFA) of the BOLD response to CO2 that provides not only the magnitude of the response (gain) but also the phase and coherence. The phase can be interpreted as indicating the speed of response and so can distinguish areas where the response is slowed. The coherence measures the fidelity with which the response follows the stimulus. The examples of gain, phase and coherence maps obtained from TFA of previously recorded test data from patients and healthy individuals demonstrate that these maps may enhance assessment of cerebrovascular pathophysiology by providing insight into the dynamics of cerebral blood flow control and distribution.


Journal of Cerebral Blood Flow and Metabolism | 2015

Measuring cerebrovascular reactivity: the dynamic response to a step hypercapnic stimulus.

Julien Poublanc; Adrian P. Crawley; Olivia Sobczyk; Gaspard Montandon; Kevin Sam; Daniel M. Mandell; Paul Dufort; Lashmikumar Venkatraghavan; James Duffin; David J. Mikulis; Joseph A Fisher

We define cerebral vascular reactivity (CVR) as the ratio of the change in blood oxygen level-dependent (BOLD) magnetic resonance imaging (MRI) signal (S) to an increase in blood partial pressure of CO2 (PCO2): % Δ S/Δ PCO2 mm Hg. Our aim was to further characterize CVR into dynamic and static components and then study 46 healthy subjects collated into a reference atlas and 20 patients with unilateral carotid artery stenosis. We applied an abrupt boxcar change in PCO2 and monitored S. We convolved the PCO2 with a set of first-order exponential functions whose time constant τ was increased in 2-second intervals between 2 and 100 seconds. The τ corresponding to the best fit between S and the convolved PCO2 was used to score the speed of response. Additionally, the slope of the regression between S and the convolved PCO2 represents the steady-state CVR (ssCVR). We found that both prolongations of τ and reductions in ssCVR (compared with the reference atlas) were associated with the reductions in CVR on the side of the lesion. τ and ssCVR are respectively the dynamic and static components of measured CVR.


Annals of Neurology | 2016

Development of White Matter Hyperintensity is Preceded by Reduced Cerebrovascular Reactivity

Kevin Sam; Adrian P. Crawley; John Conklin; Julien Poublanc; Olivia Sobczyk; Daniel M. Mandell; Lakshmikumar Venkatraghavan; James Duffin; Joseph A. Fisher; Sandra E. Black; David J. Mikulis

White matter hyperintensities (WMH) observed on neuroimaging of elderly individuals are associated with cognitive decline and disability. However, the pathogenesis of WMH remains poorly understood. We observed that regions of reduced cerebrovascular reactivity (CVR) in the white matter of young individuals correspond to the regions most susceptible to WMH in the elderly. This finding prompted us to consider that reduced CVR may play a role in the pathogenesis of WMH. We hypothesized that reduced CVR precedes development of WMH.


BMJ Open | 2015

Assessing the effect of unilateral cerebral revascularisation on the vascular reactivity of the non-intervened hemisphere: a retrospective observational study

Kevin Sam; Julien Poublanc; Olivia Sobczyk; Jay S. Han; Anne Battisti-Charbonney; Daniel M. Mandell; Michael Tymianski; Adrian P. Crawley; Joseph A. Fisher; David J. Mikulis

Objectives Unilateral haemodynamically significant large-vessel intracranial stenosis may be associated with reduced blood-oxygen-level-dependent (BOLD) cerebrovascular reactivity (CVR), an indicator of autoregulatory reserve. Reduced CVR has been associated with ipsilateral cortical thinning and loss in cognitive function. These effects have been shown to be reversible following revascularisation. Our aim was to study the effects of unilateral revascularisation on CVR in the non-intervened hemisphere in bilateral steno-occlusive or Moyamoya disease. Study Design A retrospective observational study. Setting A routine follow-up assessment of CVR after a revascularisation procedure at a research teaching hospital in Toronto (Journal wants us to generalise). Participants Thirteen patients with bilateral Moyamoya disease (age range 18 to 52 years; 3 males), seven patients with steno-occlusive disease (age range 18 to 78 years; six males) and 27 approximately age-matched normal control subjects (age range 19–71 years; 16 males) with no history or findings suggestive of any neurological or systemic disease. Intervention Participants underwent BOLD CVR MRI using computerised prospective targeting of CO2, before and after unilateral revascularisation (extracranial–intracranial bypass, carotid endarterectomy or encephaloduroarteriosynangiosis). Pre-revascularisation and post-revascularisation CVR was assessed in each major arterial vascular territory of both hemispheres. Results As expected, surgical revascularisation improved grey matter CVR in the middle cerebral artery (MCA) territory of the intervened hemisphere (0.010±0.023 to 0.143±0.010%BOLD/mm Hg, p<0.01). There was also a significant post-revascularisation improvement in grey matter CVR in the MCA territory of the non-intervened hemisphere (0.101±0.025 to 0.165±0.015%BOLD/mm Hg, p<0.01). Conclusions Not only does CVR improve in the hemisphere ipsilateral to a flow restoration procedure, but it also improves in the non-intervened hemisphere. This highlights the potential of CVR mapping for staging and evaluating surgical interventions.


Human Brain Mapping | 2017

Assessing cerebrovascular reactivity by the pattern of response to progressive hypercapnia

Joseph A. Fisher; Olivia Sobczyk; Adrian P. Crawley; Julien Poublanc; Paul Dufort; Lashmi Venkatraghavan; Kevin Sam; David J. Mikulis; James Duffin

Cerebral blood flow responds to a carbon dioxide challenge, and is often assessed as cerebrovascular reactivity, assuming a linear response over a limited stimulus range or a sigmoidal response over a wider range. However, these assumed response patterns may not necessarily apply to regions with pathophysiology. Deviations from sigmoidal responses are hypothesised to result from upstream flow limitations causing competition for blood flow between downstream regions, particularly with vasodilatory stimulation; flow is preferentially distributed to regions with more reactive vessels. Under these conditions, linear or sigmoidal fitting may not fairly describe the relationship between stimulus and flow. To assess the range of response patterns and their prevalence a survey of healthy control subjects and patients with cerebrovascular disease was conducted. We used a ramp carbon dioxide challenge from hypo‐ to hypercapnia as the stimulus, and magnetic resonance imaging to measure the flow responses. We categorized BOLD response patterns into four types based on the signs of their linear slopes in the hypo‐ and hypercapnic ranges, color coded and mapped them onto their respective anatomical scans. We suggest that these type maps complement maps of linear cerebrovascular reactivity by providing a better indication of the actual response patterns. Hum Brain Mapp 38:3415–3427, 2017.


American Journal of Neuroradiology | 2016

Identifying Significant Changes in Cerebrovascular Reactivity to Carbon Dioxide

Olivia Sobczyk; Adrian P. Crawley; Julien Poublanc; Kevin Sam; Daniel M. Mandell; David J. Mikulis; James Duffin; J.A. Fisher

BACKGROUND AND PURPOSE: Changes in cerebrovascular reactivity can be used to assess disease progression and response to therapy but require discrimination of pathology from normal test-to-test variability. Such variability is due to variations in methodology, technology, and physiology with time. With uniform test conditions, our aim was to determine the test-to-test variability of cerebrovascular reactivity in healthy subjects and in patients with known cerebrovascular disease. MATERIALS AND METHODS: Cerebrovascular reactivity was the ratio of the blood oxygen level–dependent MR imaging response divided by the change in carbon dioxide stimulus. Two standardized cerebrovascular reactivity tests were conducted at 3T in 15 healthy men (36.7 ± 16.1 years of age) within a 4-month period and were coregistered into standard space to yield voxelwise mean cerebrovascular reactivity interval difference measures, composing a reference interval difference atlas. Cerebrovascular reactivity interval difference maps were prepared for 11 male patients. For each patient, the test-retest difference of each voxel was scored statistically as z-values of the corresponding voxel mean difference in the reference atlas and then color-coded and superimposed on the anatomic images to create cerebrovascular reactivity interval difference z-maps. RESULTS: There were no significant test-to-test differences in cerebrovascular reactivity in either gray or white matter (mean gray matter, P = .431; mean white matter, P = .857; paired t test) in the healthy cohort. The patient cerebrovascular reactivity interval difference z-maps indicated regions where cerebrovascular reactivity increased or decreased and the probability that the changes were significant. CONCLUSIONS: Accounting for normal test-to-test differences in cerebrovascular reactivity enables the assessment of significant changes in disease status (stability, progression, or regression) in patients with time.


Mitochondrion | 2015

Cerebral hyperperfusion and decreased cerebrovascular reactivity correlate with neurologic disease severity in MELAS.

Lance H. Rodan; Julien Poublanc; J.A. Fisher; Olivia Sobczyk; T. Wong; E. Hlasny; David J. Mikulis; Ingrid Tein

OBJECTIVE To study the mechanisms underlying stroke-like episodes (SLEs) in MELAS syndrome. METHODS We performed a case control study in 3 siblings with MELAS syndrome (m.3243A>G tRNA(Leu(UUR))) with variable % mutant mtDNA in blood (35 to 59%) to evaluate regional cerebral blood flow (CBF) and arterial cerebrovascular reactivity (CVR) compared to age- and sex-matched healthy study controls and a healthy control population. Subjects were studied at 3T MRI using arterial spin labeling (ASL) to measure CBF; CVR was measured as a change in % Blood Oxygen Level Dependent signal (as a surrogate of CBF) to repeated 10 mmHg step increase in arterial partial pressure of CO2 (PaCO2). RESULTS MELAS siblings had decreased CVR (p ≤ 0.002) and increased CBF (p < 0.0026) compared to controls; changes correlated with disease severity and % mutant mtDNA (inversely for CVR: r = -0.82 frontal, r = -0.91 occipital cortex; directly for CBF: r = +0.85 frontal, not for occipital infarct penumbra). Mean CVR was reduced more in frontal (p < 0.001) versus occipital cortex (p = 0.002); mean CBF was increased more in occipital (p = 0.001) than frontal (p = 0.0026) cortices compared to controls. CBF correlated inversely with CVR (r = -0.99 in frontal; not in occipital infarct penumbra) suggesting that increased frontal resting flows are at the expense of flow reserve. INTERPRETATION MELAS disease severity and mutation load were inversely correlated with Interictal CVR and directly correlated with frontal CBF. These metrics offer further insight into the cerebrovascular hemodynamics in MELAS syndrome and may serve as noninvasive prognostic markers to stratify risk for SLEs. CLASSIFICATION OF EVIDENCE Class III.

Collaboration


Dive into the Olivia Sobczyk's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julien Poublanc

University Health Network

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin Sam

University Health Network

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge