Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olivier Alluin is active.

Publication


Featured researches published by Olivier Alluin.


Biomaterials | 2009

Functional recovery after peripheral nerve injury and implantation of a collagen guide.

Olivier Alluin; Catherine Wittmann; Tanguy Marqueste; Jean-François Chabas; Stéphane Garcia; Marie-Noëlle Lavaut; Didier Guinard; François Féron; Patrick Decherchi

Although surgery techniques improved over the years, the clinical results of peripheral nerve repair remain unsatisfactory. In the present study, we compare the results of a collagen nerve guide conduit to the standard clinical procedure of nerve autografting to promote repair of transected peripheral nerves. We assessed behavioral and functional sensori-motor recovery in a rat model of peroneal nerve transection. A 1cm segment of the peroneal nerve innervating the Tibialis anterior muscle was removed and immediately replaced by a new biodegradable nerve guide fabricated from highly purified type I+III collagens derived from porcine skin. Four groups of animals were included: control animals (C, n=12), transected animals grafted with either an autologous nerve graft (Gold Standard; GS, n=12) or a collagen tube filled with an acellular skeletal muscle matrix (Tube-Muscle; TM, n=12) or an empty collagen tube (Collagen-Tube; CT, n=12). We observed that 1) the locomotor recovery pattern, analyzed with kinetic parameters and peroneal functional index, was superior in the GS and CT groups; 2) a muscle contraction was obtained in all groups after stimulation of the proximal nerve but the mechanical muscle properties (twitch and tetanus threshold) parameters indicated a fast to slow fiber transition in all operated groups; 3) the muscular atrophy was greater in animals from TM group; 4) the metabosensitive afferent responses to electrically induced fatigue and to two chemical agents (KCl and lactic acid) was altered in GS, CT and TM groups; 5) the empty collagen tube supported motor axonal regeneration. Altogether, these data indicate that motor axonal regeneration and locomotor recovery can be obtained with the insertion of the collagen tube RevolNerv. Future studies may include engineered conduits that mimic as closely as possible the internal organization of uninjured nerve.


Journal of Neurotrauma | 2011

Kinematic Study of Locomotor Recovery after Spinal Cord Clip Compression Injury in Rats

Olivier Alluin; Soheila Karimi-Abdolrezaee; Hugo Delivet-Mongrain; Hugues Leblond; Michael G. Fehlings; Serge Rossignol

After spinal cord injury (SCI), precise assessment of motor recovery is essential to evaluate the outcome of new therapeutic approaches. Very little is known on the recovery of kinematic parameters after clinically-relevant severe compressive/contusive incomplete spinal cord lesions in experimental animal models. In the present study we evaluated the time-course of kinematic parameters during a 6-week period in rats walking on a treadmill after a severe thoracic clip compression SCI. The effect of daily treadmill training was also assessed. During the recovery period, a significant amount of spontaneous locomotor recovery occurred in 80% of the rats with a return of well-defined locomotor hindlimb pattern, regular plantar stepping, toe clearance and homologous hindlimb coupling. However, substantial residual abnormalities persisted up to 6 weeks after SCI including postural deficits, a bias of the hindlimb locomotor cycle toward the back of the animals with overextension at the swing/stance transition, loss of lateral balance and impairment of weight bearing. Although rats never recovered the antero-posterior (i.e. homolateral) coupling, different levels of decoupling between the fore and hindlimbs were measured. We also showed that treadmill training increased the swing duration variability during locomotion suggesting an activity-dependent compensatory mechanism of the motor control system. However, no effect of training was observed on the main locomotor parameters probably due to a ceiling effect of self-training in the cage. These findings constitute a kinematic baseline of locomotor recovery after clinically relevant SCI in rats and should be taken into account when evaluating various therapeutic strategies aimed at improving locomotor function.


Biomacromolecules | 2009

Convenient Access to Biocompatible Block Copolymers from SG1-Based Aliphatic Polyester Macro-Alkoxyamines

Benoît Clément; Thomas Trimaille; Olivier Alluin; Didier Gigmes; Kamel Mabrouk; François Féron; Patrick Decherchi; Tanguy Marqueste; Denis Bertin

SG1-based poly(d,l-lactide) (PLA) or poly(epsilon-caprolactone) (PCL) macro-alkoxyamines were synthesized and further used as macroinitiators for nitroxide-mediated polymerization (NMP) of 2-hydroxyethyl (meth)acrylate (HE(M)A) to obtain the corresponding PLA- or PCL-PHE(M)A block copolymers. First, a PLA-SG1 macro-alkoxyamine was prepared by 1,2-intermolecular radical addition (IRA) of the MAMA-SG1 (BlocBuilder) alkoxyamine onto acrylate end-capped PLA previously prepared by ring-opening polymerization. The NMP of HEA monomer from the PLA-SG1 macro-alkoxyamine appeared to be well controlled in the presence of free SG1 nitroxide, contrary to that of HEMA. In the latter case, adjustable molecular weights could be obtained by varying the HEMA to macro-alkoxyamine ratio. The versatility of our approach was then further applied to the preparation of PHEMA-b-PCL-b-PHEMA copolymers from a alpha,omega-di-SG1 functionalized PCL macro-alkoxyamine previously obtained from a PCL diacrylate by IRA. Preliminary studies of neuroblast cultures on these PCL-based copolymer films showed acceptable cyto-compatibility, demonstrating their potential for nerve repair applications.


PLOS ONE | 2014

Examination of the Combined Effects of Chondroitinase ABC, Growth Factors and Locomotor Training following Compressive Spinal Cord Injury on Neuroanatomical Plasticity and Kinematics

Olivier Alluin; Hugo Delivet-Mongrain; Marie-Krystel Gauthier; Michael G. Fehlings; Serge Rossignol; Soheila Karimi-Abdolrezaee

While several cellular and pharmacological treatments have been evaluated following spinal cord injury (SCI) in animal models, it is increasingly recognized that approaches to address the glial scar, including the use of chondroitinase ABC (ChABC), can facilitate neuroanatomical plasticity. Moreover, increasing evidence suggests that combinatorial strategies are key to unlocking the plasticity that is enabled by ChABC. Given this, we evaluated the anatomical and functional consequences of ChABC in a combinatorial approach that also included growth factor (EGF, FGF2 and PDGF-AA) treatments and daily treadmill training on the recovery of hindlimb locomotion in rats with mid thoracic clip compression SCI. Using quantitative neuroanatomical and kinematic assessments, we demonstrate that the combined therapy significantly enhanced the neuroanatomical plasticity of major descending spinal tracts such as corticospinal and serotonergic-spinal pathways. Additionally, the pharmacological treatment attenuated chronic astrogliosis and inflammation at and adjacent to the lesion with the modest synergistic effects of treadmill training. We also observed a trend for earlier recovery of locomotion accompanied by an improvement of the overall angular excursions in rats treated with ChABC and growth factors in the first 4 weeks after SCI. At the end of the 7-week recovery period, rats from all groups exhibited an impressive spontaneous recovery of the kinematic parameters during locomotion on treadmill. However, although the combinatorial treatment led to clear chronic neuroanatomical plasticity, these structural changes did not translate to an additional long-term improvement of locomotor parameters studied including hindlimb-forelimb coupling. These findings demonstrate the beneficial effects of combined ChABC, growth factors and locomotor training on the plasticity of the injured spinal cord and the potential to induce earlier neurobehavioral recovery. However, additional approaches such as stem cell therapies or a more adapted treadmill training protocol may be required to optimize this repair strategy in order to induce sustained functional locomotor improvement.


Revue Neurologique | 2005

La réparation nerveuse périphérique : 30 siècles de recherche

Christophe Desouches; Olivier Alluin; N. Mutaftschiev; Erick Dousset; Guy Magalon; José Boucraut; Francois Feron; Patrick Decherchi

INTRODUCTION: Nerve injury compromises sensory and motor functions. Techniques of peripheral nerve repair are based on our knowledge regarding regeneration. Microsurgical techniques introduced in the late 1950s and widely developed for the past 20 years have improved repairs. However, functional recovery following a peripheral mixed nerve injury is still incomplete. STATE OF ART: Good motor and sensory function after nerve injury depends on the reinnervation of the motor end plates and sensory receptors. Nerve regeneration does not begin if the cell body has not survived the initial injury or if it is unable to initiate regeneration. The regenerated axons must reach and reinnervate the appropriate target end-organs in a timely fashion. Recovery of motor function requires a critical number of motor axons reinnervating the muscle fibers. Sensory recovery is possible if the delay in reinnervation is short. Many additional factors influence the success of nerve repair or reconstruction. The timing of the repair, the level of injury, the extent of the zone of injury, the technical skill of the surgeon, and the method of repair and reconstruction contribute to the functional outcome after nerve injury. CONCLUSION: This review presents the recent advances in understanding of neural regeneration and their application to the management of primary repairs and nerve gaps.


Neuroscience | 2011

VITAMIN D3 IMPROVES RESPIRATORY ADJUSTMENT TO FATIGUE AND H-REFLEX RESPONSES IN PARAPLEGIC ADULT RATS

John Bianco; Yatma Gueye; Tanguy Marqueste; Olivier Alluin; J.-J. Risso; Stéphane Garcia; M.-N. Lavault; Michel Khrestchatisky; François Féron; Patrick Decherchi

We previously demonstrated that vitamin D₂ (ergocalciferol) triggers axon regeneration in a rat model of peripheral nerve transection. In order to confirm the regenerative potential of this neuroactive steroid, we performed a study in which vitamin D₃ (cholecalciferol) was delivered at various doses to paralytic rats. After spinal cord compression at the T10 level, rats were given orally either vehicle or vitamin D₃ at the dose of 50 IU/kg/day or 200 IU/kg/day. Three months later, M and H-waves were recorded from rat Tibialis anterior muscle in order to quantify the maximal H-reflex (H(max)) amplitude. We also monitored the ventilatory frequency during an electrically induced muscle fatigue known to elicit the muscle metaboreflex and an increase in respiratory rate. Spinal cords were then collected, fixed and immunostained with an anti-neurofilament antibody. We show here that vitamin D-treated animals display an increased number of axons within the lesion site. In addition, rats supplemented with vitamin D₃ at the dose of 200 IU/kg/day exhibit (i) an improved breathing when hindlimb was electrically stimulated; (ii) an H-reflex depression similar to control animals and (iii) an increased number of axons within the lesion and in the distal area. Our data confirm that vitamin D is a potent molecule that can be used for improving neuromuscular adaptive mechanisms and H-reflex responses.


Journal of Neurophysiology | 2015

Inducing hindlimb locomotor recovery in adult rat after complete thoracic spinal cord section using repeated treadmill training with perineal stimulation only

Olivier Alluin; Hugo Delivet-Mongrain; Serge Rossignol

Although a complete thoracic spinal cord section in various mammals induces paralysis of voluntary movements, the spinal lumbosacral circuitry below the lesion retains its ability to generate hindlimb locomotion. This important capacity may contribute to the overall locomotor recovery after partial spinal cord injury (SCI). In rats, it is usually triggered by pharmacological and/or electrical stimulation of the cord while a robot sustains the animals in an upright posture. In the present study we daily trained a group of adult spinal (T7) rats to walk with the hindlimbs for 10 wk (10 min/day for 5 days/wk), using only perineal stimulation. Kinematic analysis and terminal electromyographic recordings revealed a strong effect of training on the reexpression of hindlimb locomotion. Indeed, trained animals gradually improved their locomotion while untrained animals worsened throughout the post-SCI period. Kinematic parameters such as averaged and instant swing phase velocity, step cycle variability, foot drag duration, off period duration, and relationship between the swing features returned to normal values only in trained animals. The present results clearly demonstrate that treadmill training alone, in a normal horizontal posture, elicited by noninvasive perineal stimulation is sufficient to induce a persistent hindlimb locomotor recovery without the need for more complex strategies. This provides a baseline level that should be clearly surpassed if additional locomotor-enabling procedures are added. Moreover, it has a clinical value since intrinsic spinal reorganization induced by training should contribute to improve locomotor recovery together with afferent feedback and supraspinal modifications in patients with incomplete SCI.


Journal of Neurotrauma | 2009

FK506 induces changes in muscle properties and promotes metabosensitive nerve fiber regeneration.

Jean-François Chabas; Olivier Alluin; Guillaume Rao; Stéphane Garcia; Marie-Noëlle Lavaut; Régis Legré; Guy Magalon; Tanguy Marqueste; François Féron; Patrick Decherchi

Accumulating evidence indicates that in addition to its immunosuppressant properties, FK506 (tacrolimus), an FDA-approved molecule, promotes nerve regeneration. However, the neuroprotective and neurotrophic effects of this molecule on sensitive fiber regeneration have never been studied. In order to fill this gap in our knowledge, we assessed the therapeutic potential of FK506 in a rat model of peripheral nerve repair. A 1-cm segment of left peroneal nerve was cut out and immediately autografted in an inverted position. After surgery, the animals were treated with FK506 (1.2 mg/kg/d) via an osmotic pump and compared to untreated animals. Recovery of use of the injured leg was assessed weekly for 12 weeks using a walking track apparatus and a camcorder. At the end of this period, motor and metabosensitive responses of the regenerated axons were recorded and histological analysis was performed. We observed that FK506 significantly: (1) increased the diameter of regenerated axons in the distal portion of the graft; (2) improved the responses of sensory neurons to metabolites such as potassium chloride and lactic acid; and (3) induced a fast-to-slow-fiber-type transition of the tibialis anterior muscle. Taken together, these data indicate that FK506 potentiates metabosensitive nerve fiber regeneration. Pharmacological studies of various dosages and concentrations of FK506 are required before recommending this drug for therapeutic treatment of nerve injuries.


Journal of Applied Physiology | 2004

Neuromuscular rehabilitation by treadmill running or electrical stimulation after peripheral nerve injury and repair

Tanguy Marqueste; Jean-Roch Alliez; Olivier Alluin; Yves Jammes; Patrick Decherchi


Journal of Neurotrauma | 2008

Vitamin D2 potentiates axon regeneration.

Jean-François Chabas; Olivier Alluin; Guillaume Rao; Stéphane Garcia; Marie-Noëlle Lavaut; Jean Jacques Risso; Régis Legré; Guy Magalon; Michel Khrestchatisky; Tanguy Marqueste; Patrick Decherchi; François Féron

Collaboration


Dive into the Olivier Alluin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guy Magalon

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erick Dousset

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge