Olivier Duron
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Olivier Duron.
Evolution | 2006
Olivier Duron; Pierrick Labbé; Claire Berticat; François Rousset; Sylvain Guillot; Michel Raymond; Mylène Weill
Abstract In the mosquito Culex pipiens, insecticide resistance genes alter many life‐history traits and incur a fitness cost. Resistance to organophosphate insecticides involves two loci, with each locus coding for a different mechanism of resistance (degradation vs. insensitivity to insecticides). The density of intracellular Wolbachia bacteria has been found to be higher in resistant mosquitoes, regardless of the mechanism involved. To discriminate between costs of resistance due to resistance genes from those associated with elevated Wolbachia densities, we compared strains of mosquito sharing the same genetic background but differing in their resistance alleles and Wolbachia infection status. Life‐history traits measured included strength of insecticide resistance, larval mortality, adult female size, fecundity, predation avoidance, mating competition, and strength of cytoplasmic incompatibility (CI). We found that: (1) when Wolbachia are removed, insecticide resistance genes still affect some life‐history traits; (2) Wolbachia are capable of modifying the cost of resistance; (3) the cost of Wolbachia infections increases with their density; (4) different interactions occurred depending on the resistance alleles involved; and (5) high densities of Wolbachia do not increase the strength of CI or maternal transmission efficiency relative to low Wolbachia densities. Insecticide resistance genes generated variation in the costs of Wolbachia infections and provided an interesting opportunity to study how these costs evolve, a process generally operating when Wolbachia colonizes a new host
Molecular Ecology | 2002
Luca Fumagalli; Aleš Snoj; D. Jesenšek; Francois Balloux; T. Jug; Olivier Duron; F. Brossier; A. J. Crivelli; Patrick Berrebi
Populations of the marble trout (Salmo marmoratus) have declined critically due to introgression by brown trout (Salmo trutta) strains. In order to define strategies for long‐term conservation, we examined the genetic structure of the 8 known pure populations using 15 microsatellite loci. The analyses reveal extraordinarily strong genetic differentiation among populations separated by < 15 km, and extremely low levels of intrapopulation genetic variability. As natural recolonization seems highly unlikely, appropriate management and conservation strategies should comprise the reintroduction of pure populations from mixed stocks (translocation) to avoid further loss of genetic diversity.
Molecular Ecology | 2008
Olivier Duron; Gregory D. D. Hurst; Emily A. Hornett; James A. Josling; Jan Engelstädter
Inherited bacteria are now recognized as important players in arthropod evolution and ecology. Here, we test spiders, a group recently identified as possessing inherited bacteria commonly, for the presence of two reproductive parasites, Cardinium hertigii (Bacteroidetes group) and Wolbachia (α‐proteobacteria), estimating incidence, prevalence, any sex bias in infection, and infection diversity, for a panel of field‐collected specimens. We identify spiders as a hotspot for Cardinium. Present in 22% of the sampled species, incidence was significantly higher than that previously recorded in insects. Where present, Cardinium infection occurred at medium prevalence without evidence of sex bias in prevalence that would indicate sex‐ratio distortion activity. Wolbachia was present in 37% of species, but revealed a gradation from being rare to very common. In one case, Wolbachia was found significantly more commonly in females than males, indicating it may act as a sex‐ratio distorter in some species. Breeding work conducted on two species confirmed that Wolbachia and Cardinium were transmitted maternally, which represents the first proof of inheritance of these symbionts in spiders. Overall, this study demonstrates that the majority of spider species are infected with inherited bacteria, and their role in host biology clearly requires determination.
PLOS Pathogens | 2015
Olivier Duron; Valérie Noël; Karen D. McCoy; Matteo Bonazzi; Karim Sidi-Boumedine; Olivier Morel; Fabrice Vavre; Lionel Zenner; Elsa Jourdain; Patrick Durand; Céline Arnathau; François Renaud; Jean-François Trape; Abel S. Biguezoton; Julie Cremaschi; Muriel Dietrich; Elsa Léger; Anaïs Appelgren; Marlène Dupraz; Elena Gómez-Díaz; Georges Diatta; Guiguigbaza-Kossigan Dayo; Hassane Adakal; Sébastien Zoungrana; Laurence Vial; Christine Chevillon
Q fever is a highly infectious disease with a worldwide distribution. Its causative agent, the intracellular bacterium Coxiella burnetii, infects a variety of vertebrate species, including humans. Its evolutionary origin remains almost entirely unknown and uncertainty persists regarding the identity and lifestyle of its ancestors. A few tick species were recently found to harbor maternally-inherited Coxiella-like organisms engaged in symbiotic interactions, but their relationships to the Q fever pathogen remain unclear. Here, we extensively sampled ticks, identifying new and atypical Coxiella strains from 40 of 58 examined species, and used this data to infer the evolutionary processes leading to the emergence of C. burnetii. Phylogenetic analyses of multi-locus typing and whole-genome sequencing data revealed that Coxiella-like organisms represent an ancient and monophyletic group allied to ticks. Remarkably, all known C. burnetii strains originate within this group and are the descendants of a Coxiella-like progenitor hosted by ticks. Using both colony-reared and field-collected gravid females, we further establish the presence of highly efficient maternal transmission of these Coxiella-like organisms in four examined tick species, a pattern coherent with an endosymbiotic lifestyle. Our laboratory culture assays also showed that these Coxiella-like organisms were not amenable to culture in the vertebrate cell environment, suggesting different metabolic requirements compared to C. burnetii. Altogether, this corpus of data demonstrates that C. burnetii recently evolved from an inherited symbiont of ticks which succeeded in infecting vertebrate cells, likely by the acquisition of novel virulence factors.
Ecology Letters | 2010
Olivier Duron; Timothy E. Wilkes; Gregory D. D. Hurst
Inherited symbionts are important drivers of arthropod evolutionary ecology, with microbes acting both as partners that contribute to host adaptation, and as subtle parasites that drive host evolution. New symbioses are most commonly formed through lateral transfer, where a microbial symbiont passes infectiously from one host species to another, and then spreads through its new host population. However, the rate of horizontal transfer has been regarded as sufficiently low that population and coevolutionary processes can be approximated to one, where the symbiont interacts with a single host species. In this paper, we demonstrate experimentally that horizontal transfer of the son-killer infection of Nasonia wasps occurs readily following multi-parasitism events (two species of parasitoid wasp sharing a fly pupal host), and provide phylogenetic evidence of recent and likely ongoing transmission amongst members of the community of wasps utilizing filth flies. Combining per contact transmission rates estimated in the laboratory with rates of multiparasitism in the field produces an estimate that an infected Nasonia vitripennis individual in an Eastern US birds nest habitat has a 12% chance of passing the infection into N. giraulti. We conclude that the single host-single symbiont framework is therefore insufficient for understanding the population and evolutionary dynamics in this system and caution against blind acceptance of the single host/single symbiont framework. We conjecture that lateral transfer rates that require a multi-host framework will most likely be seen in symbionts that retain the ability to cross host epithelia, and that this will be correlated to the recency with which the symbionts have been free living.
Molecular Biology and Evolution | 2011
Célestine M. Atyame; Frédéric Delsuc; Nicole Pasteur; Mylène Weill; Olivier Duron
The α-proteobacteria Wolbachia are among the most common intracellular bacteria and have recently emerged as important drivers of arthropod biology. Wolbachia commonly act as reproductive parasites in arthropods by inducing cytoplasmic incompatibility (CI), a type of conditional sterility between hosts harboring incompatible infections. In this study, we examined the evolutionary histories of Wolbachia infections, known as wPip, in the common house mosquito Culex pipiens, which exhibits the greatest variation in CI crossing patterns observed in any insect. We first investigated a panel of 20 wPip strains for their genetic diversity through a multilocus scheme combining 13 Wolbachia genes. Because Wolbachia depend primarily on maternal transmission for spreading within arthropod populations, we also studied the variability in the coinherited Cx. pipiens mitochondria. In total, we identified 14 wPip haplotypes, which all share a monophyletic origin and clearly cluster into five distinct wPip groups. The diversity of Cx. pipiens mitochondria was extremely reduced, which is likely a consequence of cytoplasmic hitchhiking driven by a unique and recent Wolbachia invasion. Phylogenetic evidence indicates that wPip infections and mitochondrial DNA have codiverged through stable cotransmission within the cytoplasm and shows that a rapid diversification of wPip has occurred. The observed pattern demonstrates that a considerable degree of Wolbachia diversity can evolve within a single host species over short evolutionary periods. In addition, multiple signatures of recombination were found in most wPip genomic regions, leading us to conclude that the mosaic nature of wPip genomes may play a key role in their evolution.
Molecular Ecology | 2005
Olivier Duron; Jacques Lagnel; Michel Raymond; Kostas Bourtzis; Philippe Fort; Mylène Weill
Wolbachia is a group of maternally inherited endosymbiotic bacteria that infect and induce cytoplasmic incompatibility (CI) in a wide range of arthropods. In contrast to other species, the mosquito Culex pipiens displays an extremely high number of CI types suggesting differential infection by multiple Wolbachia strains. Attempts so far failed to detect Wolbachia polymorphism that might explain this high level of CI diversity found in C. pipiens populations. Here, we establish that Wolbachia infection is near to or at fixation in worldwide populations of the C. pipiens complex. Wolbachia polymorphism was addressed by sequence analysis of the Tr1 gene, a unique transposable element of the IS5 family, which allowed the identification of five C. pipiens Wolbachia strains, differing either by nucleotide substitution, presence or absence pattern, or insertion site. Sequence analysis also showed that recombination, transposition and superinfection occurred at very low frequencies. Analysis of the geographical distributions of each Wolbachia strain among C. pipiens populations indicated a strong worldwide differentiation independent from mosquito subspecies type, except in the UK. The availability of this polymorphic marker now opens the way to investigate evolution of Wolbachia populations and CI dynamics, in particular in regions where multiple crossing types coexist among C. pipiens populations.
Journal of Bacteriology | 2007
Olivier Duron; Anthony Boureux; Pierre Echaubard; Arnaud Berthomieu; Claire Berticat; Philippe Fort; Mylène Weill
Wolbachia strains are maternally inherited endosymbiotic bacteria that infect many arthropod species and have evolved several different ways of manipulating their hosts, the most frequent way being cytoplasmic incompatibility (CI). CI leads to embryo death in crosses between infected males and uninfected females as well as in crosses between individuals infected by incompatible Wolbachia strains. The mosquito Culex pipiens exhibits the highest crossing type variability reported so far. Our crossing data support the notion that CI might be driven by at least two distinct genetic units that control the CI functions independently in males and females. Although the molecular basis of CI remains unknown, proteins with ankyrin (ANK) domains represent promising candidates since they might interact with a wide range of host proteins. Here we searched for sequence variability in the 58 ANK genes carried in the genomes of Wolbachia variants infecting Culex pipiens. Only five ANK genes were polymorphic in the genomes of incompatible Wolbachia variants, and none correlated with the CI pattern obtained with 15 mosquito strains (representing 14 Wolbachia variants). Further analysis of ANK gene expression evidenced host- and sex-dependent variations, which did not improve the correlation. Taken together, these data do not support the direct implication of ANK genes in CI determinism.
Molecular Ecology | 2013
Emmanuelle Jousselin; Armelle Cœur d'Acier; Flavie Vanlerberghe-Masutti; Olivier Duron
Endosymbiotic bacteria are important drivers of insect evolutionary ecology, acting both as partners that contribute to host adaptation and as subtle parasites that manipulate host reproduction. Among them, the genus Arsenophonus is emerging as one of the most widespread lineages. Its biology is, however, entirely unknown in most cases, and it is therefore unclear how infections spread through insect populations. Here we examine the incidence and evolutionary history of Arsenophonus in aphid populations from 86 species, characterizing the processes that shape their diversity. We identify aphids as harbouring an important diversity of Arsenophonus strains. Present in 7% of the sampled species, incidence was especially high in the Aphis genus with more than 31% of the infected species. Phylogenetic investigations revealed that these Arseno‐phonus strains do not cluster within an aphid‐specific clade but rather exhibit distinct evolutionary origins showing that they undergo repeated horizontal transfers (HT) between distantly related host species. Their diversity pattern strongly suggests that ecological interactions, such as plant mediation and parasitism, are major drivers for Arsenophonus dispersal, dictating global incidence across insect communities. Notably, plants hosting aphids may be important ecological arenas for global exchange of Arsenophonus, serving as reservoirs for HT.
Proceedings of the Royal Society of London B: Biological Sciences | 2006
Olivier Duron; Philippe Fort; Mylène Weill
Wolbachia are maternally inherited endosymbiotic bacteria that infect many arthropod species and may induce cytoplasmic incompatibility (CI) resulting in abortive embryonic development. Among all the described host species, mosquitoes of the Culex pipiens complex display the highest variability of CI crossing types. Paradoxically, searches for polymorphism in Wolbachia infecting strains and field populations hitherto failed or produced very few markers. Here, we show that an abundant source of the long-sought polymorphism lies in WO prophage sequences present in multiple copies dispersed in the genome of Wolbachia infecting C. pipiens (wPip). We identified up to 66 different Wolbachia variants in C. pipiens strains and field populations and no occurrence of superinfection was observed. At least 49 different Wolbachia occurred in Southern Europe C. pipiens populations, and up to 10 different Wolbachia were even detected in a single population. This is in sharp contrast with North African and Cretan samples, which exhibited only six variants. The WO polymorphism appeared stable over time, and was exclusively transferred maternally. Interestingly, we found that the CI pattern previously described correlates with the variability of Gp15, a prophage protein similar to a bacterial virulence protein. WO prophage sequences thus represent variable markers that now open routes for approaching the molecular basis of CI, the host effects, the structure and dynamics of Wolbachia populations.