Olivier Duss
ETH Zurich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Olivier Duss.
Nature Structural & Molecular Biology | 2007
Mario Schubert; Karine Lapouge; Olivier Duss; Florian C. Oberstrass; Ilian Jelesarov; Dieter Haas; Frédéric H.-T. Allain
Proteins of the RsmA/CsrA family are global translational regulators in many bacterial species. We have determined the solution structure of a complex formed between the RsmE protein, a member of this family from Pseudomonas fluorescens, and a target RNA encompassing the ribosome-binding site of the hcnA gene. The RsmE homodimer with its two RNA-binding sites makes optimal contact with an 5′-A/UCANGGANGU/A-3′ sequence in the mRNA. When tightly gripped by RsmE, the ANGGAN core folds into a loop, favoring the formation of a 3-base-pair stem by flanking nucleotides. We validated these findings by in vivo and in vitro mutational analyses. The structure of the complex explains well how, by sequestering the Shine-Dalgarno sequence, the RsmA/CsrA proteins repress translation.
Nature | 2014
Olivier Duss; Erich Michel; Maxim Yulikov; Mario Schubert; Gunnar Jeschke; Frédéric H.-T. Allain
MicroRNA and protein sequestration by non-coding RNAs (ncRNAs) has recently generated much interest. In the bacterial Csr/Rsm system, which is considered to be the most general global post-transcriptional regulatory system responsible for bacterial virulence, ncRNAs such as CsrB or RsmZ activate translation initiation by sequestering homodimeric CsrA-type proteins from the ribosome-binding site of a subset of messenger RNAs. However, the mechanism of ncRNA-mediated protein sequestration is not understood at the molecular level. Here we show for Pseudomonas fluorescens that RsmE protein dimers assemble sequentially, specifically and cooperatively onto the ncRNA RsmZ within a narrow affinity range. This assembly yields two different native ribonucleoprotein structures. Using a powerful combination of nuclear magnetic resonance and electron paramagnetic resonance spectroscopy we elucidate these 70-kilodalton solution structures, thereby revealing the molecular mechanism of the sequestration process and how RsmE binding protects the ncRNA from RNase E degradation. Overall, our findings suggest that RsmZ is well-tuned to sequester, store and release RsmE and therefore can be viewed as an ideal protein ‘sponge’.
Progress in Nuclear Magnetic Resonance Spectroscopy | 2011
Cyril Dominguez; Mario Schubert; Olivier Duss; Sapna Ravindranathan; Frédéric H.-T. Allain
NOTICE: this is the author’s version of a work that was accepted for publication in Progress in Nuclear Magnetic Resonance Spectroscopy. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Progress in Nuclear Magnetic Resonance Spectroscopy, 2011, 25 (1-2), pp. 1–61. DOI: 10.1016/j.pnmrs.2010.10.001.
Nature Communications | 2014
Olivier Duss; Maxim Yulikov; Gunnar Jeschke; Frédéric H.-T. Allain
High-resolution structural information on RNA and its functionally important complexes with proteins is dramatically underrepresented compared with proteins but is urgently needed for understanding cellular processes at the molecular and atomic level. Here we present an EPR-based protocol to help solving large RNA and protein-RNA complex structures in solution by providing long-range distance constraints between rigid fragments. Using enzymatic ligation of smaller RNA fragments, large doubly spin-labelled RNAs can be obtained permitting the acquisition of long distance distributions (>80 Å) within a large protein-RNA complex. Using a simple and fast calculation in torsion angle space of the spin-label distributions with the program CYANA, we can derive simple distance constraints between the spin labels and use them together with short-range distance restraints derived from NMR to determine the structure of a 70 kDa protein-RNA complex composed of three subcomplexes.
Nucleic Acids Research | 2014
Olivier Duss; Erich Michel; Nana Diarra dit Konté; Mario Schubert; Frédéric H.-T. Allain
The carbon storage regulator/regulator of secondary metabolism (Csr/Rsm) type of small non-coding RNAs (sRNAs) is widespread throughout bacteria and acts by sequestering the global translation repressor protein CsrA/RsmE from the ribosome binding site of a subset of mRNAs. Although we have previously described the molecular basis of a high affinity RNA target bound to RsmE, it remains unknown how other lower affinity targets are recognized by the same protein. Here, we have determined the nuclear magnetic resonance solution structures of five separate GGA binding motifs of the sRNA RsmZ of Pseudomonas fluorescens in complex with RsmE. The structures explain how the variation of sequence and structural context of the GGA binding motifs modulate the binding affinity for RsmE by five orders of magnitude (∼10 nM to ∼3 mM, Kd). Furthermore, we see that conformational adaptation of protein side-chains and RNA enable recognition of different RNA sequences by the same protein contributing to binding affinity without conferring specificity. Overall, our findings illustrate how the variability in the Csr/Rsm protein–RNA recognition allows a fine-tuning of the competition between mRNAs and sRNAs for the CsrA/RsmE protein.
Nucleic Acids Research | 2010
Olivier Duss; Christophe Maris; Christine von Schroetter; Frédéric H.-T. Allain
Structural information on RNA, emerging more and more as a major regulator in gene expression, dramatically lags behind compared with information on proteins. Although NMR spectroscopy has proven to be an excellent tool to solve RNA structures, it is hampered by the severe spectral resonances overlap found in RNA, limiting its use for large RNA molecules. Segmental isotope labeling of RNA or ligation of a chemically synthesized RNA containing modified nucleotides with an unmodified RNA fragment have proven to have high potential in overcoming current limitations in obtaining structural information on RNA. However, low yields, cumbersome preparations and sequence requirements have limited its broader application in structural biology. Here we present a fast and efficient approach to generate multiple segmentally labeled RNAs with virtually no sequence requirements with very high yields (up to 10-fold higher than previously reported). We expect this approach to open new avenues in structural biology of RNA.
Advances in Experimental Medicine and Biology | 2012
Olivier Duss; Peter J. Lukavsky; Frédéric H.-T. Allain
NMR spectroscopy has become substantial in the elucidation of RNA structures and their complexes with other nucleic acids, proteins or small molecules. Almost half of the RNA structures deposited in the Protein Data Bank were determined by NMR spectroscopy, whereas NMR accounts for only 11% for proteins. Recent improvements in isotope labeling of RNA have strongly contributed to the high impact of NMR in RNA structure determination. In this book chapter, we review the advances in isotope labeling of RNA focusing on larger RNAs. We start by discussing several ways for the production and purification of large quantities of pure isotope labeled RNA. We continue by reviewing different strategies for selective deuteration of nucleotides. Finally, we present a comparison of several approaches for segmental isotope labeling of RNA. Selective deuteration of nucleotides in combination with segmental isotope labeling is paving the path for studying RNAs of ever increasing size.
Nucleic Acids Research | 2013
Thomas Aeschbacher; Elena Schmidt; Markus Blatter; Christophe Maris; Olivier Duss; Frédéric H.-T. Allain; Peter Güntert; Mario Schubert
The three-dimensional structure determination of RNAs by NMR spectroscopy relies on chemical shift assignment, which still constitutes a bottleneck. In order to develop more efficient assignment strategies, we analysed relationships between sequence and 1H and 13C chemical shifts. Statistics of resonances from regularly Watson–Crick base-paired RNA revealed highly characteristic chemical shift clusters. We developed two approaches using these statistics for chemical shift assignment of double-stranded RNA (dsRNA): a manual approach that yields starting points for resonance assignment and simplifies decision trees and an automated approach based on the recently introduced automated resonance assignment algorithm FLYA. Both strategies require only unlabeled RNAs and three 2D spectra for assigning the H2/C2, H5/C5, H6/C6, H8/C8 and H1′/C1′ chemical shifts. The manual approach proved to be efficient and robust when applied to the experimental data of RNAs with a size between 20 nt and 42 nt. The more advanced automated assignment approach was successfully applied to four stem-loop RNAs and a 42 nt siRNA, assigning 92–100% of the resonances from dsRNA regions correctly. This is the first automated approach for chemical shift assignment of non-exchangeable protons of RNA and their corresponding 13C resonances, which provides an important step toward automated structure determination of RNAs.
Methods in Enzymology | 2015
Olivier Duss; Maxim Yulikov; Frédéric H.-T. Allain; Gunnar Jeschke
Although functional significance of large noncoding RNAs and their complexes with proteins is well recognized, structural information for this class of systems is very scarce. Their inherent flexibility causes problems in crystallographic approaches, while their typical size is beyond the limits of state-of-the-art purely NMR-based approaches. Here, we review an approach that combines high-resolution NMR restraints with lower resolution long-range constraints based on site-directed spin labeling and measurements of distance distribution restraints in the range between 15 and 80Å by the four-pulse double electron-electron resonance (DEER) EPR technique. We discuss sample preparation, the basic assumptions behind data analysis in the EPR-based distance measurements, treatment of the label-based constraints in generation of the structure, and the back-calculation of distance distributions for structure validation. Step-by-step protocols are provided for DEER distance distribution measurements including data analysis and for CYANA based structure calculation using combined NMR and EPR data.
Methods in Enzymology | 2015
Olivier Duss; Nana Diarra dit Konté; Frédéric H.-T. Allain
RNA is a crucial regulator involved in most molecular processes of life. Understanding its function at the molecular level requires high-resolution structural information. However, the dynamic nature of RNA complicates structure determination because crystallization is often not possible or can result in crystal-packing artifacts resulting in nonnative structures. To study RNA and its complexes in solution, we described an approach in which large multi-domain RNA or protein-RNA complex structures can be determined at high resolution from isolated domains determined by nuclear magnetic resonance (NMR) spectroscopy, and then constructing the entire macromolecular structure using electron paramagnetic resonance (EPR) long-range distance constraints. Every step in this structure determination approach requires different types of isotope or spin-labeled RNAs. Here, we present a simple modular RNA cut and paste approach including protocols to generate (1) small isotopically labeled RNAs (<10 nucleotides) for NMR structural studies, which cannot be obtained by standard protocols, (2) large segmentally isotope and/or spin-labeled RNAs for diamagnetic NMR and paramagnetic relaxation enhancement NMR, and (3) large spin-labeled RNAs for pulse EPR spectroscopy.