Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olivier Gevaert is active.

Publication


Featured researches published by Olivier Gevaert.


Cancer Research | 2009

Intrinsic Gene Expression Profiles of Gliomas Are a Better Predictor of Survival than Histology

Lonneke Gravendeel; Mathilde C.M. Kouwenhoven; Olivier Gevaert; Johan de Rooi; Andrew Stubbs; J. Elza Duijm; Anneleen Daemen; Fonnet E. Bleeker; Linda B. C. Bralten; Nanne K. Kloosterhof; Bart De Moor; Paul H. C. Eilers; Peter J. van der Spek; Johan M. Kros; Peter A. E. Sillevis Smitt; Martin J. van den Bent; Pim J. French

Gliomas are the most common primary brain tumors with heterogeneous morphology and variable prognosis. Treatment decisions in patients rely mainly on histologic classification and clinical parameters. However, differences between histologic subclasses and grades are subtle, and classifying gliomas is subject to a large interobserver variability. To improve current classification standards, we have performed gene expression profiling on a large cohort of glioma samples of all histologic subtypes and grades. We identified seven distinct molecular subgroups that correlate with survival. These include two favorable prognostic subgroups (median survival, >4.7 years), two with intermediate prognosis (median survival, 1-4 years), two with poor prognosis (median survival, <1 year), and one control group. The intrinsic molecular subtypes of glioma are different from histologic subgroups and correlate better to patient survival. The prognostic value of molecular subgroups was validated on five independent sample cohorts (The Cancer Genome Atlas, Repository for Molecular Brain Neoplasia Data, GSE12907, GSE4271, and Li and colleagues). The power of intrinsic subtyping is shown by its ability to identify a subset of prognostically favorable tumors within an external data set that contains only histologically confirmed glioblastomas (GBM). Specific genetic changes (epidermal growth factor receptor amplification, IDH1 mutation, and 1p/19q loss of heterozygosity) segregate in distinct molecular subgroups. We identified a subgroup with molecular features associated with secondary GBM, suggesting that different genetic changes drive gene expression profiles. Finally, we assessed response to treatment in molecular subgroups. Our data provide compelling evidence that expression profiling is a more accurate and objective method to classify gliomas than histologic classification. Molecular classification therefore may aid diagnosis and can guide clinical decision making.


intelligent systems in molecular biology | 2006

Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks

Olivier Gevaert; Frank De Smet; Dirk Timmerman; Yves Moreau; Bart De Moor

MOTIVATION Clinical data, such as patient history, laboratory analysis, ultrasound parameters--which are the basis of day-to-day clinical decision support--are often underused to guide the clinical management of cancer in the presence of microarray data. We propose a strategy based on Bayesian networks to treat clinical and microarray data on an equal footing. The main advantage of this probabilistic model is that it allows to integrate these data sources in several ways and that it allows to investigate and understand the model structure and parameters. Furthermore using the concept of a Markov Blanket we can identify all the variables that shield off the class variable from the influence of the remaining network. Therefore Bayesian networks automatically perform feature selection by identifying the (in)dependency relationships with the class variable. RESULTS We evaluated three methods for integrating clinical and microarray data: decision integration, partial integration and full integration and used them to classify publicly available data on breast cancer patients into a poor and a good prognosis group. The partial integration method is most promising and has an independent test set area under the ROC curve of 0.845. After choosing an operating point the classification performance is better than frequently used indices.


Radiology | 2012

Non–Small Cell Lung Cancer: Identifying Prognostic Imaging Biomarkers by Leveraging Public Gene Expression Microarray Data—Methods and Preliminary Results

Olivier Gevaert; Jiajing Xu; Chuong D. Hoang; Ann N. Leung; Yue Xu; Andrew Quon; Daniel L. Rubin; Sandy Napel; Sylvia K. Plevritis

PURPOSE To identify prognostic imaging biomarkers in non-small cell lung cancer (NSCLC) by means of a radiogenomics strategy that integrates gene expression and medical images in patients for whom survival outcomes are not available by leveraging survival data in public gene expression data sets. MATERIALS AND METHODS A radiogenomics strategy for associating image features with clusters of coexpressed genes (metagenes) was defined. First, a radiogenomics correlation map is created for a pairwise association between image features and metagenes. Next, predictive models of metagenes are built in terms of image features by using sparse linear regression. Similarly, predictive models of image features are built in terms of metagenes. Finally, the prognostic significance of the predicted image features are evaluated in a public gene expression data set with survival outcomes. This radiogenomics strategy was applied to a cohort of 26 patients with NSCLC for whom gene expression and 180 image features from computed tomography (CT) and positron emission tomography (PET)/CT were available. RESULTS There were 243 statistically significant pairwise correlations between image features and metagenes of NSCLC. Metagenes were predicted in terms of image features with an accuracy of 59%-83%. One hundred fourteen of 180 CT image features and the PET standardized uptake value were predicted in terms of metagenes with an accuracy of 65%-86%. When the predicted image features were mapped to a public gene expression data set with survival outcomes, tumor size, edge shape, and sharpness ranked highest for prognostic significance. CONCLUSION This radiogenomics strategy for identifying imaging biomarkers may enable a more rapid evaluation of novel imaging modalities, thereby accelerating their translation to personalized medicine.


Nature Medicine | 2014

Oncogenic transformation of diverse gastrointestinal tissues in primary organoid culture

Xingnan Li; Lincoln D. Nadauld; Akifumi Ootani; David C Corney; Reetesh K. Pai; Olivier Gevaert; Michael Cantrell; Paul G. Rack; James T. Neal; Carol W.M. Chan; Trevor M. Yeung; Xue Gong; Jenny Yuan; Julie Wilhelmy; Sylvie Robine; Laura D. Attardi; Sylvia K. Plevritis; Kenneth E Hung; Chang-Zheng Chen; Hanlee P. Ji; Calvin J. Kuo

The application of primary organoid cultures containing epithelial and mesenchymal elements to cancer modeling holds promise for combining the accurate multilineage differentiation and physiology of in vivo systems with the facile in vitro manipulation of transformed cell lines. Here we used a single air-liquid interface culture method without modification to engineer oncogenic mutations into primary epithelial and mesenchymal organoids from mouse colon, stomach and pancreas. Pancreatic and gastric organoids exhibited dysplasia as a result of expression of Kras carrying the G12D mutation (KrasG12D), p53 loss or both and readily generated adenocarcinoma after in vivo transplantation. In contrast, primary colon organoids required combinatorial Apc, p53, KrasG12D and Smad4 mutations for progressive transformation to invasive adenocarcinoma-like histology in vitro and tumorigenicity in vivo, recapitulating multi-hit models of colorectal cancer (CRC), as compared to the more promiscuous transformation of small intestinal organoids. Colon organoid culture functionally validated the microRNA miR-483 as a dominant driver oncogene at the IGF2 (insulin-like growth factor-2) 11p15.5 CRC amplicon, inducing dysplasia in vitro and tumorigenicity in vivo. These studies demonstrate the general utility of a highly tractable primary organoid system for cancer modeling and driver oncogene validation in diverse gastrointestinal tissues.


Radiology | 2014

Glioblastoma Multiforme: Exploratory Radiogenomic Analysis by Using Quantitative Image Features

Olivier Gevaert; Achal S. Achrol; Jiajing Xu; Sebastian Echegaray; Gary K. Steinberg; Samuel H. Cheshier; Sandy Napel; Greg Zaharchuk; Sylvia K. Plevritis

PURPOSE To derive quantitative image features from magnetic resonance (MR) images that characterize the radiographic phenotype of glioblastoma multiforme (GBM) lesions and to create radiogenomic maps associating these features with various molecular data. MATERIALS AND METHODS Clinical, molecular, and MR imaging data for GBMs in 55 patients were obtained from the Cancer Genome Atlas and the Cancer Imaging Archive after local ethics committee and institutional review board approval. Regions of interest (ROIs) corresponding to enhancing necrotic portions of tumor and peritumoral edema were drawn, and quantitative image features were derived from these ROIs. Robust quantitative image features were defined on the basis of an intraclass correlation coefficient of 0.6 for a digital algorithmic modification and a test-retest analysis. The robust features were visualized by using hierarchic clustering and were correlated with survival by using Cox proportional hazards modeling. Next, these robust image features were correlated with manual radiologist annotations from the Visually Accessible Rembrandt Images (VASARI) feature set and GBM molecular subgroups by using nonparametric statistical tests. A bioinformatic algorithm was used to create gene expression modules, defined as a set of coexpressed genes together with a multivariate model of cancer driver genes predictive of the modules expression pattern. Modules were correlated with robust image features by using the Spearman correlation test to create radiogenomic maps and to link robust image features with molecular pathways. RESULTS Eighteen image features passed the robustness analysis and were further analyzed for the three types of ROIs, for a total of 54 image features. Three enhancement features were significantly correlated with survival, 77 significant correlations were found between robust quantitative features and the VASARI feature set, and seven image features were correlated with molecular subgroups (P < .05 for all). A radiogenomics map was created to link image features with gene expression modules and allowed linkage of 56% (30 of 54) of the image features with biologic processes. CONCLUSION Radiogenomic approaches in GBM have the potential to predict clinical and molecular characteristics of tumors noninvasively. Online supplemental material is available for this article.


Journal of Clinical Oncology | 2009

Molecular Response to Cetuximab and Efficacy of Preoperative Cetuximab-Based Chemoradiation in Rectal Cancer

Annelies Debucquoy; Karin Haustermans; Anneleen Daemen; Selda Aydin; Louis Libbrecht; Olivier Gevaert; Bart De Moor; Sabine Tejpar; William H. McBride; Pierre Scalliet; Christopher Stroh; Soetkin Vlassak; C Sempoux; Jean-Pascal Machiels

PURPOSE To characterize the molecular pathways activated or inhibited by cetuximab when combined with chemoradiotherapy (CRT) in rectal cancer and to identify molecular profiles and biomarkers that might improve patient selection for such treatments. PATIENTS AND METHODS Forty-one patients with rectal cancer (T3-4 and/or N+) received preoperative radiotherapy (1.8 Gy, 5 days/wk, 45 Gy) in combination with capecitabine and cetuximab (400 mg/m2 as initial dose 1 week before CRT followed by 250 mg/m2 /wk for 5 weeks). Biopsies and plasma samples were taken before treatment, after cetuximab but before CRT, and at the time of surgery. Proteomics and microarrays were used to monitor the molecular response to cetuximab and to identify profiles and biomarkers to predict treatment efficacy. RESULTS Cetuximab on its own downregulated genes involved in proliferation and invasion and upregulated inflammatory gene expression, with 16 genes being significantly influenced in microarray analysis. The decrease in proliferation was confirmed by immunohistochemistry for Ki67 (P = .01) and was accompanied by an increase in transforming growth factor-alpha in plasma samples (P < .001). Disease-free survival (DFS) was better in patients if epidermal growth factor receptor expression was upregulated in the tumor after the initial cetuximab dose (P = .02) and when fibro-inflammatory changes were present in the surgical specimen (P = .03). Microarray and proteomic profiles were predictive of DFS. CONCLUSION Our study showed that a single dose of cetuximab has a significant impact on the expression of genes involved in tumor proliferation and inflammation. We identified potential biomarkers that might predict response to cetuximab-based CRT.


Human Reproduction | 2009

Density of small diameter sensory nerve fibres in endometrium: a semi-invasive diagnostic test for minimal to mild endometriosis.

Attila Bokor; Cleophas Kyama; L. Vercruysse; Amelie Fassbender; Olivier Gevaert; Alexandra Vodolazkaia; B. De Moor; V. Fülöp; Thomas D'Hooghe

BACKGROUND The aim of our study was to test the hypothesis that multiple-sensory small-diameter nerve fibres are present in a higher density in endometrium from patients with endometriosis when compared with women with a normal pelvis, enabling the development of a semi-invasive diagnostic test for minimal-mild endometriosis. METHODS Secretory phase endometrium samples (n = 40), obtained from women with laparoscopically/histologically confirmed minimal-mild endometriosis (n = 20) and from women with a normal pelvis (n = 20) were selected from the biobank at the Leuven University Fertility Centre. Immunohistochemistry was performed to localize neural markers for sensory C, Adelta, adrenergic and cholinergic nerve fibres in the functional layer of the endometrium. Sections were immunostained with anti-human protein gene product 9.5 (PGP9.5), anti-neurofilament protein, anti-substance P (SP), anti-vasoactive intestinal peptide (VIP), anti-neuropeptide Y and anti-calcitonine gene-related polypeptide. Statistical analysis was done using the Mann-Whitney U-test, receiver operator characteristic analysis, stepwise logistic regression and least-squares support vector machines. RESULTS The density of small nerve fibres was approximately 14 times higher in endometrium from patients with minimal-mild endometriosis (1.96 +/- 2.73) when compared with women with a normal pelvis (0.14 +/- 0.46, P < 0.0001). CONCLUSIONS The combined analysis of neural markers PGP9.5, VIP and SP could predict the presence of minimal-mild endometriosis with 95% sensitivity, 100% specificity and 97.5% accuracy. To confirm our findings, prospective studies are required.


Ultrasound in Obstetrics & Gynecology | 2005

Diagnostic accuracy of varying discriminatory zones for the prediction of ectopic pregnancy in women with a pregnancy of unknown location

G. Condous; E. Kirk; Chuan Lu; S. Van Huffel; Olivier Gevaert; B. De Moor; F. De Smet; D. Timmerman; Tom Bourne

Various serum human chorionic gonadotropin (hCG) discriminatory zones are currently used for evaluating the likelihood of an ectopic pregnancy in women classified as having a pregnancy of unknown location (PUL) following a transvaginal ultrasound examination. We evaluated the diagnostic accuracy of discriminatory zones for serum hCG levels of > 1000 IU/L, 1500 IU/L and 2000 IU/L for the detection of ectopic pregnancy in such women.


Human Reproduction | 2012

Evaluation of a panel of 28 biomarkers for the non-invasive diagnosis of endometriosis

Alexandra Vodolazkaia; Y. El-Aalamat; Dusan Popovic; Attila Mihalyi; Xavier Bossuyt; Cleophas Kyama; Amelie Fassbender; Attila Bokor; D. Schols; D. Huskens; Christel Meuleman; Karen Peeraer; Carla Tomassetti; Olivier Gevaert; Etienne Waelkens; A. Kasran; B. De Moor; Thomas D'Hooghe

BACKGROUND At present, the only way to conclusively diagnose endometriosis is laparoscopic inspection, preferably with histological confirmation. This contributes to the delay in the diagnosis of endometriosis which is 6-11 years. So far non-invasive diagnostic approaches such as ultrasound (US), MRI or blood tests do not have sufficient diagnostic power. Our aim was to develop and validate a non-invasive diagnostic test with a high sensitivity (80% or more) for symptomatic endometriosis patients, without US evidence of endometriosis, since this is the group most in need of a non-invasive test. METHODS A total of 28 inflammatory and non-inflammatory plasma biomarkers were measured in 353 EDTA plasma samples collected at surgery from 121 controls without endometriosis at laparoscopy and from 232 women with endometriosis (minimal-mild n = 148; moderate-severe n = 84), including 175 women without preoperative US evidence of endometriosis. Surgery was done during menstrual (n = 83), follicular (n = 135) and luteal (n = 135) phases of the menstrual cycle. For analysis, the data were randomly divided into an independent training (n = 235) and a test (n = 118) data set. Statistical analysis was done using univariate and multivariate (logistic regression and least squares support vector machines (LS-SVM) approaches in training- and test data set separately to validate our findings. RESULTS In the training set, two models of four biomarkers (Model 1: annexin V, VEGF, CA-125 and glycodelin; Model 2: annexin V, VEGF, CA-125 and sICAM-1) analysed in plasma, obtained during the menstrual phase, could predict US-negative endometriosis with a high sensitivity (81-90%) and an acceptable specificity (68-81%). The same two models predicted US-negative endometriosis in the independent validation test set with a high sensitivity (82%) and an acceptable specificity (63-75%). CONCLUSIONS In plasma samples obtained during menstruation, multivariate analysis of four biomarkers (annexin V, VEGF, CA-125 and sICAM-1/or glycodelin) enabled the diagnosis of endometriosis undetectable by US with a sensitivity of 81-90% and a specificity of 63-81% in independent training- and test data set. The next step is to apply these models for preoperative prediction of endometriosis in an independent set of patients with infertility and/or pain without US evidence of endometriosis, scheduled for laparoscopy.


Genes, Chromosomes and Cancer | 2011

Atypical neurofibromas in neurofibromatosis type 1 are premalignant tumors.

Eline Beert; Hilde Brems; Bruno Daniëls; Ivo De Wever; Frank Van Calenbergh; Joseph Schoenaers; Maria Debiec-Rychter; Olivier Gevaert; Thomas De Raedt; Annick Van Den Bruel; Thomy de Ravel; Karen Cichowski; Lan Kluwe; Victor F. Mautner; Raf Sciot; Eric Legius

Benign peripheral nerve sheath tumors (PNSTs) are a characteristic feature of neurofibromatosis type I (NF1) patients. NF1 individuals have an 8–13% lifetime risk of developing a malignant PNST (MPNST). Atypical neurofibromas are symptomatic, hypercellular PNSTs, composed of cells with hyperchromatic nuclei in the absence of mitoses. Little is known about the origin and nature of atypical neurofibromas in NF1 patients. In this study, we classified the atypical neurofibromas in the spectrum of NF1‐associated PNSTs by analyzing 65 tumor samples from 48 NF1 patients. We compared tumor‐specific chromosomal copy number alterations between benign neurofibromas, atypical neurofibromas, and MPNSTs (low‐, intermediate‐, and high‐grade) by karyotyping and microarray‐based comparative genome hybridization (aCGH). In 15 benign neurofibromas (4 subcutaneous and 11 plexiform), no copy number alterations were found, except a single event in a plexiform neurofibroma. One highly significant recurrent aberration (15/16) was identified in the atypical neurofibromas, namely a deletion with a minimal overlapping region (MOR) in chromosome band 9p21.3, including CDKN2A and CDKN2B. Copy number loss of the CDKN2A/B gene locus was one of the most common events in the group of MPNSTs, with deletions in low‐, intermediate‐, and high‐grade MPNSTs. In one tumor, we observed a clear transition from a benign‐atypical neurofibroma toward an intermediate‐grade MPNST, confirmed by both histopathology and aCGH analysis. These data support the hypothesis that atypical neurofibromas are premalignant tumors, with the CDKN2A/B deletion as the first step in the progression toward MPNST.

Collaboration


Dive into the Olivier Gevaert's collaboration.

Top Co-Authors

Avatar

Bart De Moor

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Anneleen Daemen

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

B. De Moor

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karin Haustermans

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cleophas Kyama

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge