Olivier Grenet
Novartis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Olivier Grenet.
Nature Biotechnology | 2010
Frank Dieterle; Elias Perentes; André Cordier; Daniel Robert Roth; Pablo Verdes; Olivier Grenet; Serafino Pantano; Pierre Moulin; Daniel Wahl; Andreas Mahl; Peter End; Frank Staedtler; Francois Legay; Kevin Carl; David Laurie; Salah-Dine Chibout; Jacky Vonderscher; Gerard Maurer
Earlier and more reliable detection of drug-induced kidney injury would improve clinical care and help to streamline drug-development. As the current standards to monitor renal function, such as blood urea nitrogen (BUN) or serum creatinine (SCr), are late indicators of kidney injury, we conducted ten nonclinical studies to rigorously assess the potential of four previously described nephrotoxicity markers to detect drug-induced kidney and liver injury. Whereas urinary clusterin outperformed BUN and SCr for detecting proximal tubular injury, urinary total protein, cystatin C and β2-microglobulin showed a better diagnostic performance than BUN and SCr for detecting glomerular injury. Gene and protein expression analysis, in-situ hybridization and immunohistochemistry provide mechanistic evidence to support the use of these four markers for detecting kidney injury to guide regulatory decision making in drug development. The recognition of the qualification of these biomarkers by the EMEA and FDA will significantly enhance renal safety monitoring.
Nature Biotechnology | 2010
Josef S. Ozer; Frank Dieterle; Sean P. Troth; Elias Perentes; André Cordier; Pablo Verdes; Frank Staedtler; Andreas Mahl; Olivier Grenet; Daniel Robert Roth; Daniel Wahl; Francois Legay; Daniel J. Holder; Zoltan Erdos; Katerina Vlasakova; Hong Jin; Yan Yu; Nagaraja Muniappa; Tom Forest; Holly Clouse; Spencer Reynolds; Wendy J. Bailey; Douglas Thudium; Michael J Topper; Thomas R. Skopek; Joseph F. Sina; Warren E. Glaab; Jacky Vonderscher; Gerard Maurer; Salah-Dine Chibout
The Predictive Safety Testing Consortiums first regulatory submission to qualify kidney safety biomarkers revealed two deficiencies. To address the need for biomarkers that monitor recovery from agent-induced renal damage, we scored changes in the levels of urinary biomarkers in rats during recovery from renal injury induced by exposure to carbapenem A or gentamicin. All biomarkers responded to histologic tubular toxicities to varied degrees and with different kinetics. After a recovery period, all biomarkers returned to levels approaching those observed in uninjured animals. We next addressed the need for a serum biomarker that reflects general kidney function regardless of the exact site of renal injury. Our assay for serum cystatin C is more sensitive and specific than serum creatinine (SCr) or blood urea nitrogen (BUN) in monitoring generalized renal function after exposure of rats to eight nephrotoxicants and two hepatotoxicants. This sensitive serum biomarker will enable testing of renal function in animal studies that do not involve urine collection.
PLOS ONE | 2011
Harri Lempiäinen; Arne Müller; Sarah Brasa; Soon-Siong Teo; Tim-Christoph Roloff; Laurent Morawiec; Natasa Zamurovic; Axel Vicart; Enrico Funhoff; Philippe Couttet; Dirk Schübeler; Olivier Grenet; Jennifer Marlowe; Jonathan G. Moggs; Rémi Terranova
Evidence suggests that epigenetic perturbations are involved in the adverse effects associated with some drugs and toxicants, including certain classes of non-genotoxic carcinogens. Such epigenetic changes (altered DNA methylation and covalent histone modifications) may take place at the earliest stages of carcinogenesis and their identification holds great promise for biomedical research. Here, we evaluate the sensitivity and specificity of genome-wide epigenomic and transcriptomic profiling in phenobarbital (PB)-treated B6C3F1 mice, a well-characterized rodent model of non-genotoxic liver carcinogenesis. Methylated DNA Immunoprecipitation (MeDIP)-coupled microarray profiling of 17,967 promoter regions and 4,566 intergenic CpG islands was combined with genome-wide mRNA expression profiling to identify liver tissue-specific PB-mediated DNA methylation and transcriptional alterations. Only a limited number of significant anti-correlations were observed between PB-induced transcriptional and promoter-based DNA methylation perturbations. However, the constitutive androstane receptor (CAR) target gene Cyp2b10 was found to be concomitantly hypomethylated and transcriptionally activated in a liver tissue-specific manner following PB treatment. Furthermore, analysis of active and repressive histone modifications using chromatin immunoprecipitation revealed a strong PB-mediated epigenetic switch at the Cyp2b10 promoter. Our data reveal that PB-induced transcriptional perturbations are not generally associated with broad changes in the DNA methylation status at proximal promoters and suggest that the drug-inducible CAR pathway regulates an epigenetic switch from repressive to active chromatin at the target gene Cyp2b10. This study demonstrates the utility of integrated epigenomic and transcriptomic profiling for elucidating early mechanisms and biomarkers of non-genotoxic carcinogenesis.
PLOS ONE | 2012
Caterina Vacchi-Suzzi; Yasmina Bauer; Brian R. Berridge; Sandrine Bongiovanni; Kevin Gerrish; Hisham K. Hamadeh; Martin Letzkus; Jonathan Lyon; Jonathan G. Moggs; Richard S. Paules; Francois Pognan; Frank Staedtler; Martin P. Vidgeon-Hart; Olivier Grenet; Philippe Couttet
Anti-cancer therapy based on anthracyclines (DNA intercalating Topoisomerase II inhibitors) is limited by adverse effects of these compounds on the cardiovascular system, ultimately causing heart failure. Despite extensive investigations into the effects of doxorubicin on the cardiovascular system, the molecular mechanisms of toxicity remain largely unknown. MicroRNAs are endogenously transcribed non-coding 22 nucleotide long RNAs that regulate gene expression by decreasing mRNA stability and translation and play key roles in cardiac physiology and pathologies. Increasing doses of doxorubicin, but not etoposide (a Topoisomerase II inhibitor devoid of cardiovascular toxicity), specifically induced the up-regulation of miR-208b, miR-216b, miR-215, miR-34c and miR-367 in rat hearts. Furthermore, the lowest dosing regime (1 mg/kg/week for 2 weeks) led to a detectable increase of miR-216b in the absence of histopathological findings or alteration of classical cardiac stress biomarkers. In silico microRNA target predictions suggested that a number of doxorubicin-responsive microRNAs may regulate mRNAs involved in cardiac tissue remodeling. In particular miR-34c was able to mediate the DOX-induced changes of Sipa1 mRNA (a mitogen-induced Rap/Ran GTPase activating protein) at the post-transcriptional level and in a seed sequence dependent manner. Our results show that integrated heart tissue microRNA and mRNA profiling can provide valuable early genomic biomarkers of drug-induced cardiac injury as well as novel mechanistic insight into the underlying molecular pathways.
Toxicological Sciences | 2009
Heidrun Ellinger-Ziegelbauer; Jennifer Fostel; Chinami Aruga; Daniel Bauer; Eric Boitier; Shibing Deng; Donna Dickinson; Anne-Celine Le Fevre; Albert J. Fornace; Olivier Grenet; Yi-Zhong Gu; Jean-Christophe Hoflack; Masako Shiiyama; Roger Smith; Ronald D. Snyder; Catherine de La Moureyre–Spire; Gotaro Tanaka
The genotoxicity testing battery is highly sensitive for detection of chemical carcinogens. However, it features a low specificity and provides only limited mechanistic information required for risk assessment of positive findings. This is especially important in case of positive findings in the in vitro chromosome damage assays, because chromosome damage may be also induced secondarily to cell death. An increasing body of evidence indicates that toxicogenomic analysis of cellular stress responses provides an insight into mechanisms of action of genotoxicants. To evaluate the utility of such a toxicogenomic analysis we evaluated gene expression profiles of TK6 cells treated with four model genotoxic agents using a targeted high density real-time PCR approach in a multilaboratory project coordinated by the Health and Environmental Sciences Institute Committee on the Application of Genomics in Mechanism-based Risk Assessment. We show that this gene profiling technology produced reproducible data across laboratories allowing us to conclude that expression analysis of a relevant gene set is capable of distinguishing compounds that cause DNA adducts or double strand breaks from those that interfere with mitotic spindle function or that cause chromosome damage as a consequence of cytotoxicity. Furthermore, our data suggest that the gene expression profiles at early time points are most likely to provide information relevant to mechanisms of genotoxic damage and that larger gene expression arrays will likely provide richer information for differentiating molecular mechanisms of action of genotoxicants. Although more compounds need to be tested to identify a robust molecular signature, this study confirms the potential of toxicogenomic analysis for investigation of genotoxic mechanisms.
Toxicological Sciences | 2013
Harri Lempiäinen; Philippe Couttet; Federico Bolognani; Arne Müller; Valerie Dubost; Raphaëlle Luisier; Alberto del Rio-Espinola; Veronique Vitry; Elif B. Unterberger; John P. Thomson; Fridolin Treindl; Ute Metzger; Clemens Wrzodek; Florian Hahne; Tulipan Zollinger; Sarah Brasa; Magdalena Kalteis; M. Marcellin; Fanny Giudicelli; Albert Braeuning; Laurent Morawiec; Natasa Zamurovic; Ulrich Längle; Nico Scheer; Dirk Schübeler; Jay I. Goodman; Salah-Dine Chibout; Jennifer Marlowe; Diethilde Theil; David J. Heard
The molecular events during nongenotoxic carcinogenesis and their temporal order are poorly understood but thought to include long-lasting perturbations of gene expression. Here, we have investigated the temporal sequence of molecular and pathological perturbations at early stages of phenobarbital (PB) mediated liver tumor promotion in vivo. Molecular profiling (mRNA, microRNA [miRNA], DNA methylation, and proteins) of mouse liver during 13 weeks of PB treatment revealed progressive increases in hepatic expression of long noncoding RNAs and miRNAs originating from the Dlk1-Dio3 imprinted gene cluster, a locus that has recently been associated with stem cell pluripotency in mice and various neoplasms in humans. PB induction of the Dlk1-Dio3 cluster noncoding RNA (ncRNA) Meg3 was localized to glutamine synthetase-positive hypertrophic perivenous hepatocytes, suggesting a role for β-catenin signaling in the dysregulation of Dlk1-Dio3 ncRNAs. The carcinogenic relevance of Dlk1-Dio3 locus ncRNA induction was further supported by in vivo genetic dependence on constitutive androstane receptor and β-catenin pathways. Our data identify Dlk1-Dio3 ncRNAs as novel candidate early biomarkers for mouse liver tumor promotion and provide new opportunities for assessing the carcinogenic potential of novel compounds.
PLOS ONE | 2013
Caterina Vacchi-Suzzi; Florian Hahne; Philippe Scheubel; M. Marcellin; Valerie Dubost; Magdalena Westphal; Catherine Boeglen; Stine Büchmann-Møller; Ming Sin Cheung; André Cordier; Christopher De Benedetto; Mark Deurinck; Moritz Frei; Pierre Moulin; Olivier Grenet; Armelle Grevot; Robert Stull; Diethilde Theil; Jonathan G. Moggs; Estelle Marrer; Philippe Couttet
MicroRNAs are short non-coding RNAs that regulate gene expression at the post-transcriptional level and play key roles in heart development and cardiovascular diseases. Here, we have characterized the expression and distribution of microRNAs across eight cardiac structures (left and right ventricles, apex, papillary muscle, septum, left and right atrium and valves) in rat, Beagle dog and cynomolgus monkey using microRNA sequencing. Conserved microRNA signatures enriched in specific heart structures across these species were identified for cardiac valve (miR-let-7c, miR-125b, miR-127, miR-199a-3p, miR-204, miR-320, miR-99b, miR-328 and miR-744) and myocardium (miR-1, miR-133b, miR-133a, miR-208b, miR-30e, miR-499-5p, miR-30e*). The relative abundance of myocardium-enriched (miR-1) and valve-enriched (miR-125b-5p and miR-204) microRNAs was confirmed using in situ hybridization. MicroRNA-mRNA interactions potentially relevant for cardiac functions were explored using anti-correlation expression analysis and microRNA target prediction algorithms. Interactions between miR-1/Timp3, miR-125b/Rbm24, miR-204/Tgfbr2 and miR-208b/Csnk2a2 were identified and experimentally investigated in human pulmonary smooth muscle cells and luciferase reporter assays. In conclusion, we have generated a high-resolution heart structure-specific mRNA/microRNA expression atlas for three mammalian species that provides a novel resource for investigating novel microRNA regulatory circuits involved in cardiac molecular physiopathology.
Leukemia Research | 2010
Armin Wolf; Philippe Couttet; Min Dong; Olivier Grenet; Marcia Heron; Ursula Junker; Ulrich Wilhelm Laengle; David Ledieu; Estelle Marrer; Anja Nussher; Elke Persohn; Francois Pognan; Gilles-Jacques Riviere; Daniel Robert Roth; Christian Trendelenburg; Jeffrey Tsao; Danielle Roman
Cytotoxic concentrations of imatinib mesylate (10-50 microM) were required to trigger markers of apoptosis and endoplasmic reticulum stress response in neonatal rat ventricular myocytes and fibroblasts, with no significant differences observed between c-Abl silenced and nonsilenced cells. In mice, oral or intraperitoneal imatinib treatment did not induce cardiovascular pathology or heart failure. In rats, high doses of oral imatinib did result in some cardiac hypertrophy. Multi-organ toxicities may have increased the cardiac workload and contributed to the cardiac hypertrophy observed in rats only. These data suggest that imatinib is not cardiotoxic at clinically relevant concentrations (5 microM).
Toxicological Sciences | 2014
Raphaëlle Luisier; Harri Lempiäinen; Nina Scherbichler; Albert Braeuning; Miriam Geissler; Valerie Dubost; Arne Müller; Nico Scheer; Salah-Dine Chibout; Hisanori Hara; Frank Picard; Diethilde Theil; Philippe Couttet; Antonio Vitobello; Olivier Grenet; Bettina Grasl-Kraupp; Heidrun Ellinger-Ziegelbauer; John P. Thomson; Richard R. Meehan; Clifford R. Elcombe; Colin J. Henderson; C. Roland Wolf; Michael Schwarz; Pierre Moulin; Rémi Terranova; Jonathan G. Moggs
The constitutive androstane receptor (CAR) and the pregnane X receptor (PXR) are closely related nuclear receptors involved in drug metabolism and play important roles in the mechanism of phenobarbital (PB)-induced rodent nongenotoxic hepatocarcinogenesis. Here, we have used a humanized CAR/PXR mouse model to examine potential species differences in receptor-dependent mechanisms underlying liver tissue molecular responses to PB. Early and late transcriptomic responses to sustained PB exposure were investigated in liver tissue from double knock-out CAR and PXR (CAR(KO)-PXR(KO)), double humanized CAR and PXR (CAR(h)-PXR(h)), and wild-type C57BL/6 mice. Wild-type and CAR(h)-PXR(h) mouse livers exhibited temporally and quantitatively similar transcriptional responses during 91 days of PB exposure including the sustained induction of the xenobiotic response gene Cyp2b10, the Wnt signaling inhibitor Wisp1, and noncoding RNA biomarkers from the Dlk1-Dio3 locus. Transient induction of DNA replication (Hells, Mcm6, and Esco2) and mitotic genes (Ccnb2, Cdc20, and Cdk1) and the proliferation-related nuclear antigen Mki67 were observed with peak expression occurring between 1 and 7 days PB exposure. All these transcriptional responses were absent in CAR(KO)-PXR(KO) mouse livers and largely reversible in wild-type and CAR(h)-PXR(h) mouse livers following 91 days of PB exposure and a subsequent 4-week recovery period. Furthermore, PB-mediated upregulation of the noncoding RNA Meg3, which has recently been associated with cellular pluripotency, exhibited a similar dose response and perivenous hepatocyte-specific localization in both wild-type and CAR(h)-PXR(h) mice. Thus, mouse livers coexpressing human CAR and PXR support both the xenobiotic metabolizing and the proliferative transcriptional responses following exposure to PB.
Biochemical Pharmacology | 2000
Olivier Grenet; Maria Bobadilla; Salah-Dine Chibout; Sandra Steiner
Cyclosporine A (CsA) is a potent immunosuppressant with the drawback of renal side effects. We reported that CsA markedly decreases calcium-binding protein calbindin-D28k mRNA levels in rat kidneys, and showed that this decrease is associated with its adverse renal effects. The transcription of the calbindin-D28k gene is activated via the vitamin D pathway. In this work, the potential CsA-mediated impairment of the vitamin D pathway was investigated. Wistar rats were treated for 12 days with 50 mg/kg/day CsA or for 20 days with 50 mg/kg/day of the non-immunosuppressant and non-nephrotoxic SDZ PSC 833, which had been previously shown not to affect calbindin-D28k mRNA levels. The expression of the three vitamin D-regulated genes calbindin-D28k, 1,25-dihydroxyvitamin D3-24-hydroxylase (24-OHase), and vitamin D receptor (VDR) were quantified in rat kidney homogenates by real-time reverse transcription-polymerase chain reaction. Plasma parathyroid hormone (PTH) as well as plasma and kidney 1,25 dihydroxyvitamin D3 (calcitriol) levels were monitored in all animals. CsA induced a 85% decrease in calbindin-D28k mRNA levels as well as a 40% and 69% decrease in VDR and 24-OHase mRNA levels, respectively. Plasma and kidney 1,25 dihydroxyvitamin D3 as well as plasma PTH levels were increased by CsA, but not by SDZ PSC 833. The treatment with SDZ PSC 833 did not affect calbindin-D28k or VDR expression, but did cause a 73% decrease in 24-OHase mRNA levels. Taken together, these results indicate an association between CsA-mediated down-regulation of rat renal calbindin-D28k mRNA and the decrease in other 1,25 dihydroxyvitamin D3-regulated genes, suggesting an impairment of the vitamin D pathway by CsA which may be related to its adverse renal side effects and its immunosuppressive activity.