Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Salah-Dine Chibout is active.

Publication


Featured researches published by Salah-Dine Chibout.


Nature Biotechnology | 2010

Urinary clusterin, cystatin C, β2-microglobulin and total protein as markers to detect drug-induced kidney injury

Frank Dieterle; Elias Perentes; André Cordier; Daniel Robert Roth; Pablo Verdes; Olivier Grenet; Serafino Pantano; Pierre Moulin; Daniel Wahl; Andreas Mahl; Peter End; Frank Staedtler; Francois Legay; Kevin Carl; David Laurie; Salah-Dine Chibout; Jacky Vonderscher; Gerard Maurer

Earlier and more reliable detection of drug-induced kidney injury would improve clinical care and help to streamline drug-development. As the current standards to monitor renal function, such as blood urea nitrogen (BUN) or serum creatinine (SCr), are late indicators of kidney injury, we conducted ten nonclinical studies to rigorously assess the potential of four previously described nephrotoxicity markers to detect drug-induced kidney and liver injury. Whereas urinary clusterin outperformed BUN and SCr for detecting proximal tubular injury, urinary total protein, cystatin C and β2-microglobulin showed a better diagnostic performance than BUN and SCr for detecting glomerular injury. Gene and protein expression analysis, in-situ hybridization and immunohistochemistry provide mechanistic evidence to support the use of these four markers for detecting kidney injury to guide regulatory decision making in drug development. The recognition of the qualification of these biomarkers by the EMEA and FDA will significantly enhance renal safety monitoring.


Nature Biotechnology | 2010

A panel of urinary biomarkers to monitor reversibility of renal injury and a serum marker with improved potential to assess renal function

Josef S. Ozer; Frank Dieterle; Sean P. Troth; Elias Perentes; André Cordier; Pablo Verdes; Frank Staedtler; Andreas Mahl; Olivier Grenet; Daniel Robert Roth; Daniel Wahl; Francois Legay; Daniel J. Holder; Zoltan Erdos; Katerina Vlasakova; Hong Jin; Yan Yu; Nagaraja Muniappa; Tom Forest; Holly Clouse; Spencer Reynolds; Wendy J. Bailey; Douglas Thudium; Michael J Topper; Thomas R. Skopek; Joseph F. Sina; Warren E. Glaab; Jacky Vonderscher; Gerard Maurer; Salah-Dine Chibout

The Predictive Safety Testing Consortiums first regulatory submission to qualify kidney safety biomarkers revealed two deficiencies. To address the need for biomarkers that monitor recovery from agent-induced renal damage, we scored changes in the levels of urinary biomarkers in rats during recovery from renal injury induced by exposure to carbapenem A or gentamicin. All biomarkers responded to histologic tubular toxicities to varied degrees and with different kinetics. After a recovery period, all biomarkers returned to levels approaching those observed in uninjured animals. We next addressed the need for a serum biomarker that reflects general kidney function regardless of the exact site of renal injury. Our assay for serum cystatin C is more sensitive and specific than serum creatinine (SCr) or blood urea nitrogen (BUN) in monitoring generalized renal function after exposure of rats to eight nephrotoxicants and two hepatotoxicants. This sensitive serum biomarker will enable testing of renal function in animal studies that do not involve urine collection.


PLOS ONE | 2009

Gene Expression Patterns in Peripheral Blood Correlate with the Extent of Coronary Artery Disease

Peter Sinnaeve; Mark P. Donahue; Peter Grass; David Seo; Jacky Vonderscher; Salah-Dine Chibout; William E. Kraus; Michael H. Sketch; Charlotte L. Nelson; Geoffrey S. Ginsburg; Pascal J. Goldschmidt-Clermont; Christopher B. Granger

Systemic and local inflammation plays a prominent role in the pathogenesis of atherosclerotic coronary artery disease, but the relationship of whole blood gene expression changes with coronary disease remains unclear. We have investigated whether gene expression patterns in peripheral blood correlate with the severity of coronary disease and whether these patterns correlate with the extent of atherosclerosis in the vascular wall. Patients were selected according to their coronary artery disease index (CADi), a validated angiographical measure of the extent of coronary atherosclerosis that correlates with outcome. RNA was extracted from blood of 120 patients with at least a stenosis greater than 50% (CADi≥23) and from 121 controls without evidence of coronary stenosis (CADi = 0). 160 individual genes were found to correlate with CADi (rho>0.2, P<0.003). Prominent differential expression was observed especially in genes involved in cell growth, apoptosis and inflammation. Using these 160 genes, a partial least squares multivariate regression model resulted in a highly predictive model (r2 = 0.776, P<0.0001). The expression pattern of these 160 genes in aortic tissue also predicted the severity of atherosclerosis in human aortas, showing that peripheral blood gene expression associated with coronary atherosclerosis mirrors gene expression changes in atherosclerotic arteries. In conclusion, the simultaneous expression pattern of 160 genes in whole blood correlates with the severity of coronary artery disease and mirrors expression changes in the atherosclerotic vascular wall.


Biosensors and Bioelectronics | 2003

Evanescent resonator chips: a universal platform with superior sensitivity for fluorescence-based microarrays

Dieter Neuschäfer; Wolfgang Budach; Christoph Wanke; Salah-Dine Chibout

In the present paper, we introduce for the first time a novel generation of a universal fluorescence transducer, the so-called evanescent resonator (ER) platform. The device comprises a transparent substrate and a thin dielectric surface layer containing sub-micron corrugated structures. The ER chip exhibits an inherent physical signal amplification due to confinement of excitation energy in the thin surface layer. Energy confinement is based on interference effects created by the abnormal reflection geometry and leads to efficient excitation of surface-bound fluorophores in the evanescent field of the chip. The evanescent resonator platform has the potential to increase the fluorescence yield of labelled biomolecules to more than 100-fold when compared with conventional microarray chips. The new ER device has been developed for analysis of nucleic acids from different species. However, it can be used with all kinds of biomolecular affinity systems. The platform combines superior sensitivity with exceptional reproducibility and ease of use. The chips are compatible with commercially available laser scanners, confocal microscopes, and portable or miniaturised CCD read-out equipment.


Cell Biology and Toxicology | 1999

Predictivity of an in vitro model for acute and chronic skin irritation (SkinEthic) applied to the testing of topical vehicles

A. de Fraissinette; Valerie Picarles; Salah-Dine Chibout; Maryelle Kolopp; Jesús Medina; Pascale Burtin; Marie-Eve Ebelin; S. Osborne; F. K. Mayer; A. Spake; Martin Rosdy; B. De Wever; R.A. Ettlin; André Cordier

An in vitro human reconstructed epidermis model (SkinEthic) used for screening acute and chronic skin irritation potential was validated against in vivo data from skin tolerability studies. The irritation potential of sodium lauryl sulfate (SLS), calcipotriol and trans-retinoic acid was investigated. The in vitro epidermis-like model consists of cultures of keratinocytes from human foreskin on a polycarbonate filter. The modulation of cell viability, the release and gene expression of proinflammatory cytokines, interleukins 1α and 8, and morphological changes were evaluated during 3 days as endpoints representative for an inflammatory reaction. The cumulative irritation potential of the topical products was evaluated in a human clinical study by visual scoring and biophysical measurement of inflammatory skin reaction after repeated 24 h applications over 3 weeks under Finn chamber patches. All topical products that were nonirritating in the human study were noncytotoxic and did not induce cytokine expression in the in vitro acute model (day 1 exposure). All irritating controls exhibited specific cell viability and cytokine patterns, which were predictive of the in vivo human data. The ranking of mild to moderate skin irritation potential was based on the lack of cytotoxicity and the presence of cytokine patterns including gene expression specific for each irritant, using the chronic in vitro model (up to 3 days exposure).The human reconstructed epidermis model SkinEthic was shown to be a reliable preclinical tool predicting the irritation potential of topical products. Moreover, it is a useful model in a two-step tiered strategy for screening acute and chronic irritation potential for the selection of vehicles for new topical drugs.


Toxicology and Applied Pharmacology | 2003

Effects of clofibric acid on mRNA expression profiles in primary cultures of rat, mouse and human hepatocytes

Lysiane Richert; Christelle Lamboley; Catherine Viollon-Abadie; Peter Grass; Nicole Hartmann; Stephane Laurent; Bruno Heyd; Georges Mantion; Salah-Dine Chibout; Frank Staedtler

The mRNA expression profile in control and clofibric acid (CLO)-treated mouse, rat, and human hepatocytes was analyzed using species-specific oligonucleotide DNA microarrays (Affymetrix). A statistical empirical Bayes procedure was applied in order to select the significantly differentially expressed genes. Treatment with the peroxisome proliferator CLO induced up-regulation of genes involved in peroxisome proliferation and in cell proliferation as well as down-regulation of genes involved in apoptosis in hepatocytes of rodent but not of human origin. CLO treatment induced up-regulation of microsomal cytochrome P450 4a genes in rodent hepatocytes and in two of six human hepatocyte cultures. In addition, genes encoding phenobarbital-inducible cytochrome P450s were also up-regulated by CLO in rodent and human hepatocyte cultures. Up-regulation of phenobarbital-inducible UDP-glucuronosyl-transferase genes by CLO was observed in both rat and human but not in mouse hepatocytes. CLO treatment induced up-regulation of L-fatty acid binding protein (L-FABP) gene in hepatocytes of both rodent and human origin. However, while genes of the cytosolic, microsomal, and mitochondrial pathways involved in fatty acid transport and metabolism were up-regulated by CLO in both rodent and human hepatocyte cultures, genes of the peroxisomal pathway of lipid metabolism were up-regulated in rodents only. An up-regulation of hepatocyte nuclear factor 1alpha (HNF1alpha) by CLO was observed only in human hepatocyte cultures, suggesting that this trans-activating factor may play a key role in the regulation of fatty acid metabolism in human liver as well as in the nonresponsiveness of human liver to CLO-induced regulation of cell proliferation and apoptosis.


Toxicological Sciences | 2013

Identification of Dlk1-Dio3 imprinted gene cluster noncoding RNAs as novel candidate biomarkers for liver tumor promotion.

Harri Lempiäinen; Philippe Couttet; Federico Bolognani; Arne Müller; Valerie Dubost; Raphaëlle Luisier; Alberto del Rio-Espinola; Veronique Vitry; Elif B. Unterberger; John P. Thomson; Fridolin Treindl; Ute Metzger; Clemens Wrzodek; Florian Hahne; Tulipan Zollinger; Sarah Brasa; Magdalena Kalteis; M. Marcellin; Fanny Giudicelli; Albert Braeuning; Laurent Morawiec; Natasa Zamurovic; Ulrich Längle; Nico Scheer; Dirk Schübeler; Jay I. Goodman; Salah-Dine Chibout; Jennifer Marlowe; Diethilde Theil; David J. Heard

The molecular events during nongenotoxic carcinogenesis and their temporal order are poorly understood but thought to include long-lasting perturbations of gene expression. Here, we have investigated the temporal sequence of molecular and pathological perturbations at early stages of phenobarbital (PB) mediated liver tumor promotion in vivo. Molecular profiling (mRNA, microRNA [miRNA], DNA methylation, and proteins) of mouse liver during 13 weeks of PB treatment revealed progressive increases in hepatic expression of long noncoding RNAs and miRNAs originating from the Dlk1-Dio3 imprinted gene cluster, a locus that has recently been associated with stem cell pluripotency in mice and various neoplasms in humans. PB induction of the Dlk1-Dio3 cluster noncoding RNA (ncRNA) Meg3 was localized to glutamine synthetase-positive hypertrophic perivenous hepatocytes, suggesting a role for β-catenin signaling in the dysregulation of Dlk1-Dio3 ncRNAs. The carcinogenic relevance of Dlk1-Dio3 locus ncRNA induction was further supported by in vivo genetic dependence on constitutive androstane receptor and β-catenin pathways. Our data identify Dlk1-Dio3 ncRNAs as novel candidate early biomarkers for mouse liver tumor promotion and provide new opportunities for assessing the carcinogenic potential of novel compounds.


Journal of The American Society of Nephrology | 2013

LMX1B Mutations Cause Hereditary FSGS without Extrarenal Involvement

Olivia Boyer; Stéphanie Woerner; Fan Yang; Bolan Linghu; Olivier Gribouval; Marie-Josèphe Tête; José S. Duca; Lloyd B. Klickstein; Amy Damask; Joseph D. Szustakowski; Françoise Heibel; Marie Matignon; Véronique Baudouin; François Chantrel; Jacqueline Champigneulle; Laurent Martin; Patrick Nitschke; Marie-Claire Gubler; Keith J. Johnson; Salah-Dine Chibout; Corinne Antignac

LMX1B encodes a homeodomain-containing transcription factor that is essential during development. Mutations in LMX1B cause nail-patella syndrome, characterized by dysplasia of the patellae, nails, and elbows and FSGS with specific ultrastructural lesions of the glomerular basement membrane (GBM). By linkage analysis and exome sequencing, we unexpectedly identified an LMX1B mutation segregating with disease in a pedigree of five patients with autosomal dominant FSGS but without either extrarenal features or ultrastructural abnormalities of the GBM suggestive of nail-patella-like renal disease. Subsequently, we screened 73 additional unrelated families with FSGS and found mutations involving the same amino acid (R246) in 2 families. An LMX1B in silico homology model suggested that the mutated residue plays an important role in strengthening the interaction between the LMX1B homeodomain and DNA; both identified mutations would be expected to diminish such interactions. In summary, these results suggest that isolated FSGS could result from mutations in genes that are also involved in syndromic forms of FSGS. This highlights the need to include these genes in all diagnostic approaches to FSGS that involve next-generation sequencing.


Toxicological Sciences | 2014

Phenobarbital Induces Cell Cycle Transcriptional Responses in Mouse Liver Humanized for Constitutive Androstane and Pregnane X Receptors

Raphaëlle Luisier; Harri Lempiäinen; Nina Scherbichler; Albert Braeuning; Miriam Geissler; Valerie Dubost; Arne Müller; Nico Scheer; Salah-Dine Chibout; Hisanori Hara; Frank Picard; Diethilde Theil; Philippe Couttet; Antonio Vitobello; Olivier Grenet; Bettina Grasl-Kraupp; Heidrun Ellinger-Ziegelbauer; John P. Thomson; Richard R. Meehan; Clifford R. Elcombe; Colin J. Henderson; C. Roland Wolf; Michael Schwarz; Pierre Moulin; Rémi Terranova; Jonathan G. Moggs

The constitutive androstane receptor (CAR) and the pregnane X receptor (PXR) are closely related nuclear receptors involved in drug metabolism and play important roles in the mechanism of phenobarbital (PB)-induced rodent nongenotoxic hepatocarcinogenesis. Here, we have used a humanized CAR/PXR mouse model to examine potential species differences in receptor-dependent mechanisms underlying liver tissue molecular responses to PB. Early and late transcriptomic responses to sustained PB exposure were investigated in liver tissue from double knock-out CAR and PXR (CAR(KO)-PXR(KO)), double humanized CAR and PXR (CAR(h)-PXR(h)), and wild-type C57BL/6 mice. Wild-type and CAR(h)-PXR(h) mouse livers exhibited temporally and quantitatively similar transcriptional responses during 91 days of PB exposure including the sustained induction of the xenobiotic response gene Cyp2b10, the Wnt signaling inhibitor Wisp1, and noncoding RNA biomarkers from the Dlk1-Dio3 locus. Transient induction of DNA replication (Hells, Mcm6, and Esco2) and mitotic genes (Ccnb2, Cdc20, and Cdk1) and the proliferation-related nuclear antigen Mki67 were observed with peak expression occurring between 1 and 7 days PB exposure. All these transcriptional responses were absent in CAR(KO)-PXR(KO) mouse livers and largely reversible in wild-type and CAR(h)-PXR(h) mouse livers following 91 days of PB exposure and a subsequent 4-week recovery period. Furthermore, PB-mediated upregulation of the noncoding RNA Meg3, which has recently been associated with cellular pluripotency, exhibited a similar dose response and perivenous hepatocyte-specific localization in both wild-type and CAR(h)-PXR(h) mice. Thus, mouse livers coexpressing human CAR and PXR support both the xenobiotic metabolizing and the proliferative transcriptional responses following exposure to PB.


Nature Communications | 2015

Mutations in TRAF3IP1/IFT54 reveal a new role for IFT proteins in microtubule stabilization

Albane A. Bizet; Anita Becker-Heck; Rebecca Ryan; K. Weber; Emilie Filhol; Pauline Krug; Jan Halbritter; Marion Delous; Marie-Christine Lasbennes; Bolan Linghu; Mohammed Zarhrate; Patrick Nitschke; Meriem Garfa-Traore; Fabrizio C. Serluca; Fan Yang; Tewis Bouwmeester; Lucile Pinson; Elisabeth Cassuto; Philippe Dubot; Neveen A. Soliman Elshakhs; José A. Sahel; Rémi Salomon; Iain A. Drummond; Marie-Claire Gubler; Corinne Antignac; Salah-Dine Chibout; Joseph D. Szustakowski; Friedhelm Hildebrandt; Esben Lorentzen; Andreas W. Sailer

Ciliopathies are a large group of clinically and genetically heterogeneous disorders caused by defects in primary cilia. Here we identified mutations in TRAF3IP1 (TNF Receptor-Associated Factor Interacting Protein 1) in eight patients from five families with nephronophthisis (NPH) and retinal degeneration, two of the most common manifestations of ciliopathies. TRAF3IP1 encodes IFT54, a subunit of the IFT-B complex required for ciliogenesis. The identified mutations result in mild ciliary defects in patients but also reveal an unexpected role of IFT54 as a negative regulator of microtubule stability via MAP4 (microtubule-associated protein 4). Microtubule defects are associated with altered epithelialization/polarity in renal cells and with pronephric cysts and microphthalmia in zebrafish embryos. Our findings highlight the regulation of cytoplasmic microtubule dynamics as a role of the IFT54 protein beyond the cilium, contributing to the development of NPH-related ciliopathies.

Collaboration


Dive into the Salah-Dine Chibout's collaboration.

Researchain Logo
Decentralizing Knowledge