Olivier Lebel
University of Michigan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Olivier Lebel.
Journal of the American Chemical Society | 2010
Jennifer K. Schnobrich; Olivier Lebel; Katie A. Cychosz; Anne Dailly; Antek G. Wong-Foy; Adam J. Matzger
Five non-interpenetrated microporous coordination polymers (MCPs) are derived by vertex desymmetrization using linkers with symmetry inequivalent coordinating groups, and these MCPs include properties such as rare metal clusters, new network topologies, and supramolecular isomerism. Gas sorption in polymorphic frameworks, UMCM-152 and UMCM-153 (based upon a copper-coordinated tetracarboxylated triphenylbenzene linker), reveals nearly identical properties with BET surface areas in the range of 3300-3500 m(2)/g and excess hydrogen uptake of 5.7 and 5.8 wt % at 77 K. In contrast, adsorption of organosulfur compounds dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (DMDBT) shows remarkably different capacities, providing direct evidence that liquid-phase adsorption is not solely dependent on surface area or linker/metal cluster identity. Structural features present in MCPs derived from these reduced symmetry linkers include the presence of more than one type of Cu-paddlewheel in a structure derived from a terphenyl tricarboxylate (UMCM-151) and a three-bladed zinc paddlewheel metal cluster in an MCP derived from a pentacarboxylated triphenylbenzene linker (UMCM-154).
Journal of the American Chemical Society | 2015
Jaana Vapaavuori; Audrey Laventure; C. Geraldine Bazuin; Olivier Lebel; Christian Pellerin
We demonstrate experimentally for the first time that the illumination of azobenzene derivatives leads to changes in molecular environment similar to those observed on heating but that are highly heterogeneous at the submolecular scale. This localized photoplasticization, which can be associated with a free volume gradient, helps to understand the puzzling phenomenon of photoinduced macroscopic material flow and photoexpansion upon illumination far below the glass transition temperature (T(g)). The findings stem from the correlation of infrared (IR) spectral band shifts measured upon illumination with those measured at controlled temperatures for two amorphous DR1-functionalized azo derivatives, a polymer, pDR1A, and a molecular glass, gDR1. This new approach reveals that IR spectroscopy can be used as an efficient label-free molecular-scale thermometer that allows the assignment of an effective temperature (T(eff)) to each moiety in these compounds when irradiated. While no band shift is observed upon illumination for the vibrational modes assigned to backbone moieties of pDR1A and gDR1 and a small band shift is found for the spacer moiety, dramatic band shifts are recorded for the azo moiety, corresponding to an increase in T(eff) of up to nearly 200 °C and a molecular environment that is equivalent to thermal heating well above the bulk T(g) of the material. An irradiated azo-containing material thus combines characteristic properties of amorphous materials both below and above its bulk T(g). The direct measurement of T(eff) is a powerful probe of the local environment at the submolecular scale, paving the way toward better rationalization of photoexpansion and the athermal malleability of azo-containing materials upon illumination below their T(g).
ACS Applied Materials & Interfaces | 2017
Audrey Laventure; Jérémie Bourotte; Jaana Vapaavuori; Lucas Karperien; Ribal Georges Sabat; Olivier Lebel; Christian Pellerin
Irradiation of azomaterials causes various photophysical and photomechanical effects that can be exploited for the preparation of functional materials such as surface relief gratings (SRGs). Herein, we develop and apply an efficient strategy to optimize the SRG inscription process by decoupling, for the first time, the important effects of the azo content and glass transition temperature (Tg). We prepare blends of a photoactive molecular glass functionalized with the azo Disperse Red 1 (gDR1) with a series of analogous photopassive molecular glasses. Blends with 10 and 40 mol % of gDR1 are completely miscible, present very similar optical properties, and cover a wide range of Tg from below to well above ambient temperature. SRG inscription experiments show that the diffraction efficiency (DE), residual DE, and initial inscription rate reach a maximum when Tg is 25-40 °C above ambient temperature for low to high azo content, respectively. Indeed, for a fixed 40 mol % azo content, choosing the optimal Tg enables doubling the SRG inscription rate and increasing DE 6-fold. Moreover, a higher azo content enables higher DE for a similar Tg. Spectroscopy measurements indicate that the photo-orientation of DR1 and its thermal stability are maximal with Tg around 70 °C, independent of the azo content. We conclude that the SRG potential of azomaterials depends on their capability to photo-orient but that the matrix rigidity eventually limits the inscription kinetics, leading to an optimal Tg that depends on the azo content. This study exposes clear material design guidelines to optimize the SRG inscription process and the photoactivity of azomaterials.
Journal of the American Chemical Society | 2007
Antek G. Wong-Foy; Olivier Lebel; Adam J. Matzger
Chemistry of Materials | 2006
Olivier Lebel; Marie-Eve Perron; Thierry Maris; Sylvia Francis Zalzal; and Antonio Nanci; James D. Wuest
Journal of the American Chemical Society | 2006
Olivier Lebel; Thierry Maris; Marie-Eve Perron; Eric Demers; James D. Wuest
Archive | 2007
Adam J. Matzger; Antek G. Wong-Foy; Olivier Lebel
Canadian Journal of Chemistry | 2006
Olivier Lebel; Thierry Maris; James D. Wuest
Crystal Growth & Design | 2017
Audrey Laventure; Thierry Maris; Christian Pellerin; Olivier Lebel
Bulletin of the American Physical Society | 2017
Yue Qiu; M. D. Ediger; Olivier Lebel