Olivier Lerouxel
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Olivier Lerouxel.
The Plant Cell | 2008
David Cavalier; Olivier Lerouxel; Lutz Neumetzler; Kazuchika Yamauchi; Antje Reinecke; Glenn Freshour; Olga A. Zabotina; Michael G. Hahn; Ingo Burgert; Markus Pauly; Natasha V. Raikhel; Kenneth Keegstra
Xyloglucans are the main hemicellulosic polysaccharides found in the primary cell walls of dicots and nongraminaceous monocots, where they are thought to interact with cellulose to form a three-dimensional network that functions as the principal load-bearing structure of the primary cell wall. To determine whether two Arabidopsis thaliana genes that encode xylosyltransferases, XXT1 and XXT2, are involved in xyloglucan biosynthesis in vivo and to determine how the plant cell wall is affected by the lack of expression of XXT1, XXT2, or both, we isolated and characterized xxt1 and xxt2 single and xxt1 xxt2 double T-DNA insertion mutants. Although the xxt1 and xxt2 mutants did not have a gross morphological phenotype, they did have a slight decrease in xyloglucan content and showed slightly altered distribution patterns for xyloglucan epitopes. More interestingly, the xxt1 xxt2 double mutant had aberrant root hairs and lacked detectable xyloglucan. The reduction of xyloglucan in the xxt2 mutant and the lack of detectable xyloglucan in the xxt1 xxt2 double mutant resulted in significant changes in the mechanical properties of these plants. We conclude that XXT1 and XXT2 encode xylosyltransferases that are required for xyloglucan biosynthesis. Moreover, the lack of detectable xyloglucan in the xxt1 xxt2 double mutant challenges conventional models of the plant primary cell wall.
Plant Physiology | 2002
Olivier Lerouxel; Tze Siang Choo; Martial Séveno; Loı̈c Faye; Patrice Lerouge; Markus Pauly
Various biochemical, chemical, and microspectroscopic methods have been developed throughout the years for the screening and identification of mutants with altered cell wall structure. However, these procedures fail to provide the insight into structural aspects of the cell wall polymers. In this paper, we present various methods for rapidly screening Arabidopsis cell wall mutants. The enzymatic fingerprinting procedures using high-performance anion-exchange-pulsed-amperometric detection liquid chromatography, fluorophore-assisted carbohydrate electrophoresis, and matrix-assisted laser-desorption ionization time of flight (MALDI-TOF) mass spectrometry (MS) were exemplified by the structural analysis of the hemicellulose xyloglucan. All three techniques are able to identify structural alterations of wall xyloglucans in mur1,mur2, and mur3, which in comparison with the wild type have side chain defects in their xyloglucan structure. The quickest analysis was provided by MALDI-TOF MS. Although MALDI-TOF MS per se is not quantitative, it is possible to reproducibly obtain relative abundance information of the various oligosaccharides present in the extract. The lack of absolute quantitation by MALDI-TOF MS was compensated for with a xyloglucan-specific endoglucanase and simple colorimetric assay. In view of the potential for mass screening using MALDI-TOF MS, a PERL-based program was developed to process the spectra obtained from MALDI-TOF MS automatically. Outliers can be identified very rapidly according to a set of defined parameters based on data collected from the wild-type plants. The methods presented here can easily be adopted for the analysis of other wall polysaccharides. MALDI-TOF MS offers a powerful tool to screen and identify cell wall mutants rapidly and efficiently and, more importantly, is able to give initial insights into the structural composition and/or modification that occurs in these mutants.
The Plant Cell | 2002
Silvère Pagant; Adeline Bichet; Keiko Sugimoto; Olivier Lerouxel; Thierry Desprez; Maureen C. McCann; Patrice Lerouge; Samantha Vernhettes; Herman Höfte
The cell wall is the major limiting factor for plant growth. Wall extension is thought to result from the loosening of its structure. However, it is not known how this is coordinated with wall synthesis. We have identified two novel allelic cellulose-deficient dwarf mutants, kobito1-1 and kobito1-2 (kob1-1 and kob1-2). The cellulose deficiency was confirmed by the direct observation of microfibrils in most recent wall layers of elongating root cells. In contrast to the wild type, which showed transversely oriented parallel microfibrils, kob1 microfibrils were randomized and occluded by a layer of pectic material. No such changes were observed in another dwarf mutant, pom1, suggesting that the cellulose defect in kob1 is not an indirect result of the reduced cell elongation. Interestingly, in the meristematic zone of kob1 roots, microfibrils appeared unaltered compared with the wild type, suggesting a role for KOB1 preferentially in rapidly elongating cells. KOB1 was cloned and encodes a novel, highly conserved, plant-specific protein that is plasma membrane bound, as shown with a green fluorescent protein–KOB1 fusion protein. KOB1 mRNA was present in all organs investigated, and its overexpression did not cause visible phenotypic changes. KOB1 may be part of the cellulose synthesis machinery in elongating cells, or it may play a role in the coordination between cell elongation and cellulose synthesis.
Plant Physiology | 2006
Grégory Mouille; Hanna Witucka-Wall; Marie-Pierre Bruyant; Olivier Loudet; Sandra Pelletier; Christophe Rihouey; Olivier Lerouxel; Patrice Lerouge; Herman Höfte; Markus Pauly
Quantitative trait loci (QTL) analysis was used to identify genes underlying natural variation in primary cell wall composition in Arabidopsis (Arabidopsis thaliana). The cell walls of dark-grown seedlings of a Bay-0 × Shahdara recombinant inbred line population were analyzed using three miniaturized global cell wall fingerprinting techniques: monosaccharide composition analysis by gas chromatography, xyloglucan oligosaccharide mass profiling, and whole-wall Fourier-transform infrared microspectroscopy. Heritable variation and transgression were observed for the arabinose-rhamnose ratio, xyloglucan side-chain composition (including O-acetylation levels), and absorbance for a subset of Fourier-transform infrared wavenumbers. In total, 33 QTL, corresponding to at least 11 different loci controlling dark-grown hypocotyl length, pectin composition, and levels of xyloglucan fucosylation and O-acetylation, were identified. One major QTL, accounting for 51% of the variation in the arabinose-rhamnose ratio, affected the number of arabinan side chains presumably attached to the pectic polysaccharide rhamnogalacturonan I, paving the way to positional cloning of the first gene underlying natural variation in pectin structure. Several QTL were found to be colocalized, which may have implications for the regulation of xyloglucan metabolism. These results demonstrate the feasibility of combining fingerprinting techniques, natural variation, and quantitative genetics to gain original insight into the molecular mechanisms underlying the structure and metabolism of cell wall polysaccharides.
Journal of Proteome Research | 2009
Sara Fasmer Hansen; Emmanuel Bettler; Michaela Wimmerová; Anne Imberty; Olivier Lerouxel; Christelle Breton
Approximately 450 glycosyltransferase (GT) sequences have been already identified in the Arabidopsis genome that organize into 40 sequence-based families, but a vast majority of these gene products remain biochemically uncharacterized open reading frames. Given the complexity of the cell wall carbohydrate network, it can be inferred that some of the biosynthetic genes have not yet been identified by classical bioinformatics approaches. With the objective to identify new plant GT genes, we designed a bioinformatic strategy that is based on the use of several remote homology detection methods that act at the 1D, 2D, and 3D level. Together, these methods led to the identification of more than 150 candidate protein sequences. Among them, 20 are considered as putative glycosyltransferases that should further be investigated since known GT signatures were clearly identified.
Plant Journal | 2015
Marie Dumont; Arnaud Lehner; Muriel Bardor; Carole Burel; Boris Vauzeilles; Olivier Lerouxel; Charles T. Anderson; Jean-Claude Mollet; Patrice Lerouge
Screening of commercially available fluoro monosaccharides as putative growth inhibitors in Arabidopsis thaliana revealed that 2-fluoro 2-l-fucose (2F-Fuc) reduces root growth at micromolar concentrations. The inability of 2F-Fuc to affect an Atfkgp mutant that is defective in the fucose salvage pathway indicates that 2F-Fuc must be converted to its cognate GDP nucleotide sugar in order to inhibit root growth. Chemical analysis of cell wall polysaccharides and glycoproteins demonstrated that fucosylation of xyloglucans and of N-linked glycans is fully inhibited by 10 μm 2F-Fuc in Arabidopsis seedling roots, but genetic evidence indicates that these alterations are not responsible for the inhibition of root development by 2F-Fuc. Inhibition of fucosylation of cell wall polysaccharides also affected pectic rhamnogalacturonan-II (RG-II). At low concentrations, 2F-Fuc induced a decrease in RG-II dimerization. Both RG-II dimerization and root growth were partially restored in 2F-Fuc-treated seedlings by addition of boric acid, suggesting that the growth phenotype caused by 2F-Fuc was due to a deficiency of RG-II dimerization. Closer investigation of the 2F-Fuc-induced growth phenotype demonstrated that cell division is not affected by 2F-Fuc treatments. In contrast, the inhibitor suppressed elongation of root cells and promoted the emergence of adventitious roots. This study further emphasizes the importance of RG-II in cell elongation and the utility of glycosyltransferase inhibitors as new tools for studying the functions of cell wall polysaccharides in plant development. Moreover, supplementation experiments with borate suggest that the function of boron in plants might not be restricted to RG-II cross-linking, but that it might also be a signal molecule in the cell wall integrity-sensing mechanism.
The Plant Cell | 2016
Joana Rocha; Félix Cicéron; Daniele de Sanctis; Mickael Lelimousin; Valérie Chazalet; Olivier Lerouxel; Christelle Breton
The crystal structure of an Arabidopsis fucosyltransferase shows how it recognizes its donor and acceptor substrates in the Golgi and provides information on the reaction mechanism and selectivity of the enzyme. The plant cell wall is a complex and dynamic network made mostly of cellulose, hemicelluloses, and pectins. Xyloglucan, the major hemicellulosic component in Arabidopsis thaliana, is biosynthesized in the Golgi apparatus by a series of glycan synthases and glycosyltransferases before export to the wall. A better understanding of the xyloglucan biosynthetic machinery will give clues toward engineering plants with improved wall properties or designing novel xyloglucan-based biomaterials. The xyloglucan-specific α2-fucosyltransferase FUT1 catalyzes the transfer of fucose from GDP-fucose to terminal galactosyl residues on xyloglucan side chains. Here, we present crystal structures of Arabidopsis FUT1 in its apoform and in a ternary complex with GDP and a xylo-oligosaccharide acceptor (named XLLG). Although FUT1 is clearly a member of the large GT-B fold family, like other fucosyltransferases of known structures, it contains a variant of the GT-B fold. In particular, it includes an extra C-terminal region that is part of the acceptor binding site. Our crystal structures support previous findings that FUT1 behaves as a functional dimer. Mutational studies and structure comparison with other fucosyltransferases suggest that FUT1 uses a SN2-like reaction mechanism similar to that of protein-O-fucosyltransferase 2. Thus, our results provide new insights into the mechanism of xyloglucan fucosylation in the Golgi.
Plant Journal | 2003
Thomas Goujon; Zoran Minic; Abdelhak El Amrani; Olivier Lerouxel; Estelle Aletti; Catherine Lapierre; Jean-Paul Joseleau; Lise Jouanin
Physiologia Plantarum | 2004
Maı̈té Vicré; Olivier Lerouxel; Jill M. Farrant; Patrice Lerouge; Azeddine Driouich
Plant Journal | 2005
Olivier Lerouxel; Grégory Mouille; Christine Andème-Onzighi; Marie-Pierre Bruyant; Martial Séveno; Corinne Loutelier-Bourhis; Azeddine Driouich; Herman Höfte; Patrice Lerouge