Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olivier Neyrolles is active.

Publication


Featured researches published by Olivier Neyrolles.


Journal of Experimental Medicine | 2003

DC-SIGN Is the Major Mycobacterium tuberculosis Receptor on Human Dendritic Cells

Ludovic Tailleux; Olivier Schwartz; Jean-Louis Herrmann; Elisabeth Pivert; Mary Jackson; Ali Amara; Luc Legres; Donatus Dreher; Laurent P. Nicod; Jean Claude Gluckman; Philippe H. Lagrange; Brigitte Gicquel; Olivier Neyrolles

Early interactions between lung dendritic cells (LDCs) and Mycobacterium tuberculosis, the etiological agent of tuberculosis, are thought to be critical for mounting a protective anti-mycobacterial immune response and for determining the outcome of infection. However, these interactions are poorly understood, at least at the molecular level. Here we show that M. tuberculosis enters human monocyte-derived DCs after binding to the recently identified lectin DC-specific intercellular adhesion molecule-3 grabbing nonintegrin (DC-SIGN). By contrast, complement receptor (CR)3 and mannose receptor (MR), which are the main M. tuberculosis receptors on macrophages (Mφs), appeared to play a minor role, if any, in mycobacterial binding to DCs. The mycobacteria-specific lipoglycan lipoarabinomannan (LAM) was identified as a key ligand of DC-SIGN. Freshly isolated human LDCs were found to express DC-SIGN, and M. tuberculosis–derived material was detected in CD14−HLA-DR+DC-SIGN+ cells in lymph nodes (LNs) from patients with tuberculosis. Thus, as for human immunodeficiency virus (HIV), which is captured by the same receptor, DC-SIGN–mediated entry of M. tuberculosis in DCs in vivo is likely to influence bacterial persistence and host immunity.


Infection and Immunity | 2006

Dissection of ESAT-6 System 1 of Mycobacterium tuberculosis and Impact on Immunogenicity and Virulence

Priscille Brodin; Laleh Majlessi; Laurent Marsollier; Marien I. de Jonge; Daria Bottai; Caroline Demangel; Jason Hinds; Olivier Neyrolles; Philip D. Butcher; Claude Leclerc; Stewart T. Cole; Roland Brosch

ABSTRACT The dedicated secretion system ESX-1 of Mycobacterium tuberculosis encoded by the extended RD1 region (extRD1) assures export of the ESAT-6 protein and its partner, the 10-kDa culture filtrate protein CFP-10, and is missing from the vaccine strains M. bovis BCG and M. microti. Here, we systematically investigated the involvement of each individual ESX-1 gene in the secretion of both antigens, specific immunogenicity, and virulence. ESX-1-complemented BCG and M. microti strains were more efficiently engulfed by bone-marrow-derived macrophages than controls, and this may account for the enhanced in vivo growth of ESX-1-carrying strains. Inactivation of gene pe35 (Rv3872) impaired expression of CFP-10 and ESAT-6, suggesting a role in regulation. Genes Rv3868, Rv3869, Rv3870, Rv3871, and Rv3877 encoding an ATP-dependent chaperone and translocon were essential for secretion of ESAT-6 and CFP-10 in contrast to ppe68 Rv3873 and Rv3876, whose inactivation did not impair secretion of ESAT-6. A strict correlation was found between ESAT-6 export and the generation of ESAT-6 specific T-cell responses in mice. Furthermore, ESAT-6 secretion and specific immunogenicity were almost always correlated with enhanced virulence in the SCID mouse model. Only loss of Rv3865 and part of Rv3866 did not affect ESAT-6 secretion or immunogenicity but led to attenuation. This suggests that Rv3865/66 represent a new virulence factor that is independent from ESAT-6 secretion. The present study has allowed us to identify new aspects of the extRD1 region of M. tuberculosis and to explore its role in the pathogenesis of tuberculosis.


PLOS Genetics | 2009

Evolutionary dynamics of human Toll-like receptors and their different contributions to host defense.

Luis B. Barreiro; Meriem Ben-Ali; Hélène Quach; Guillaume Laval; Etienne Patin; Joseph K. Pickrell; Christiane Bouchier; Magali Tichit; Olivier Neyrolles; Brigitte Gicquel; Judith R. Kidd; Kenneth K. Kidd; Alexandre Alcaïs; Josiane Ragimbeau; Sandra Pellegrini; Laurent Abel; Jean-Laurent Casanova; Lluis Quintana-Murci

Infectious diseases have been paramount among the threats to health and survival throughout human evolutionary history. Natural selection is therefore expected to act strongly on host defense genes, particularly on innate immunity genes whose products mediate the direct interaction between the host and the microbial environment. In insects and mammals, the Toll-like receptors (TLRs) appear to play a major role in initiating innate immune responses against microbes. In humans, however, it has been speculated that the set of TLRs could be redundant for protective immunity. We investigated how natural selection has acted upon human TLRs, as an approach to assess their level of biological redundancy. We sequenced the ten human TLRs in a panel of 158 individuals from various populations worldwide and found that the intracellular TLRs—activated by nucleic acids and particularly specialized in viral recognition—have evolved under strong purifying selection, indicating their essential non-redundant role in host survival. Conversely, the selective constraints on the TLRs expressed on the cell surface—activated by compounds other than nucleic acids—have been much more relaxed, with higher rates of damaging nonsynonymous and stop mutations tolerated, suggesting their higher redundancy. Finally, we tested whether TLRs have experienced spatially-varying selection in human populations and found that the region encompassing TLR10-TLR1-TLR6 has been the target of recent positive selection among non-Africans. Our findings indicate that the different TLRs differ in their immunological redundancy, reflecting their distinct contributions to host defense. The insights gained in this study foster new hypotheses to be tested in clinical and epidemiological genetics of infectious disease.


PLOS ONE | 2006

Is adipose tissue a place for Mycobacterium tuberculosis persistence

Olivier Neyrolles; Rogelio Hernández-Pando; Paul Fornès; Ludovic Tailleux; Jorge Barrios Payán; Elisabeth Pivert; Yann Bordat; Diane Aguilar; Marie-Christine Prévost; Caroline Petit; Brigitte Gicquel

Background Mycobacterium tuberculosis, the etiological agent of tuberculosis (TB), has the ability to persist in its human host for exceptionally long periods of time. However, little is known about the location of the bacilli in latently infected individuals. Long-term mycobacterial persistence in the lungs has been reported, but this may not sufficiently account for strictly extra-pulmonary TB, which represents 10–15% of the reactivation cases. Methodology/Principal Findings We applied in situ and conventional PCR to sections of adipose tissue samples of various anatomical origins from 19 individuals from Mexico and 20 from France who had died from causes other than TB. M. tuberculosis DNA could be detected by either or both techniques in fat tissue surrounding the kidneys, the stomach, the lymph nodes, the heart and the skin in 9/57 Mexican samples (6/19 individuals), and in 8/26 French samples (6/20 individuals). In addition, mycobacteria could be immuno-detected in perinodal adipose tissue of 1 out of 3 biopsy samples from individuals with active TB. In vitro, using a combination of adipose cell models, including the widely used murine adipose cell line 3T3-L1, as well as primary human adipocytes, we show that after binding to scavenger receptors, M. tuberculosis can enter within adipocytes, where it accumulates intracytoplasmic lipid inclusions and survives in a non-replicating state that is insensitive to the major anti-mycobacterial drug isoniazid. Conclusions/Significance Given the abundance and the wide distribution of the adipose tissue throughout the body, our results suggest that this tissue, among others, might constitute a vast reservoir where the tubercle bacillus could persist for long periods of time, and avoid both killing by antimicrobials and recognition by the host immune system. In addition, M. tuberculosis-infected adipocytes might provide a new model to investigate dormancy and to evaluate new drugs for the treatment of persistent infection.


PLOS Medicine | 2009

Sexual inequality in tuberculosis.

Olivier Neyrolles; Lluis Quintana-Murci

Olivier Neyrolles and Lluis Quintana-Murci review the evidence on why tuberulosis notification is twice as high in men as in women in most countries.


PLOS Medicine | 2006

Promoter variation in the DC-SIGN-encoding gene CD209 is associated with tuberculosis.

Luis B. Barreiro; Olivier Neyrolles; C. Babb; Ludovic Tailleux; Hélène Quach; Ken McElreavey; Paul D. van Helden; Eileen G. Hoal; Brigitte Gicquel; Lluis Quintana-Murci

Background Tuberculosis, which is caused by Mycobacterium tuberculosis, remains one of the leading causes of mortality worldwide. The C-type lectin DC-SIGN is known to be the major M. tuberculosis receptor on human dendritic cells. We reasoned that if DC-SIGN interacts with M. tuberculosis, as well as with other pathogens, variation in this gene might have a broad range of influence in the pathogenesis of a number of infectious diseases, including tuberculosis. Methods and Findings We tested whether polymorphisms in CD209, the gene encoding DC-SIGN, are associated with susceptibility to tuberculosis through sequencing and genotyping analyses in a South African cohort. After exclusion of significant population stratification in our cohort, we observed an association between two CD209 promoter variants (−871G and −336A) and decreased risk of developing tuberculosis. By looking at the geographical distribution of these variants, we observed that their allelic combination is mainly confined to Eurasian populations. Conclusions Our observations suggest that the two −871G and −336A variants confer protection against tuberculosis. In addition, the geographic distribution of these two alleles, together with their phylogenetic status, suggest that they may have increased in frequency in non-African populations as a result of host genetic adaptation to a longer history of exposure to tuberculosis. Further characterization of the biological consequences of DC-SIGN variation in tuberculosis will be crucial to better appreciate the role of this lectin in interactions between the host immune system and the tubercle bacillus as well as other pathogens.


Journal of Immunology | 2003

Constrained Intracellular Survival of Mycobacterium tuberculosis in Human Dendritic Cells

Ludovic Tailleux; Olivier Neyrolles; Stéphanie Honoré-Bouakline; Emmanuelle Perret; Franc oise Sanchez; Jean-Pierre Abastado; Philippe H. Lagrange; Jean Claude Gluckman; Michelle Rosenzwajg; Jean-Louis Herrmann

Dendritic cells (DCs) are likely to play a key role in immunity against Mycobacterium tuberculosis, but the fate of the bacterium in these cells is still unknown. Here we report that, unlike macrophages (Mφs), human monocyte-derived DCs are not permissive for the growth of virulent M. tuberculosis H37Rv. Mycobacterial vacuoles are neither acidic nor fused with host cell lysosomes in DCs, in a mode similar to that seen in mycobacterial infection of Mφs. However, uptake of the fluid phase marker dextran, and of transferrin, as well as accumulation of the recycling endosome-specific small GTPase Rab11 onto the mycobacterial phagosome, are almost abolished in infected DCs, but not in Mφs. Moreover, communication between mycobacterial phagosomes and the host-cell biosynthetic pathway is impaired, given that <10% of M. tuberculosis vacuoles in DCs stained for the endoplasmic reticulum-specific proteins Grp78/BiP and calnexin. This correlates with the absence of the fusion factor N-ethylmaleimide-sensitive factor onto the vacuolar membrane in this cell type. Trafficking between the vacuoles and the host cell recycling and biosynthetic pathways is strikingly reduced in DCs, which is likely to impair access of intracellular mycobacteria to essential nutrients and may thus explain the absence of mycobacterial growth in this cell type. This unique location of M. tuberculosis in DCs is compatible with their T lymphocyte-stimulating functions, because M. tuberculosis-infected DCs have the ability to specifically induce cytokine production by autologous T lymphocytes from presensitized individuals. DCs have evolved unique subcellular trafficking mechanisms to achieve their Ag-presenting functions when infected by intracellular mycobacteria.


PLOS ONE | 2008

Probing Host Pathogen Cross-Talk by Transcriptional Profiling of Both Mycobacterium tuberculosis and Infected Human Dendritic Cells and Macrophages.

Ludovic Tailleux; Simon J. Waddell; Mattia Pelizzola; Alessandra Mortellaro; Michael Withers; Antoine Tanne; Paola Ricciardi Castagnoli; Brigitte Gicquel; Neil G. Stoker; Philip D. Butcher; Maria Foti; Olivier Neyrolles

Background Transcriptional profiling using microarrays provides a unique opportunity to decipher host pathogen cross-talk on the global level. Here, for the first time, we have been able to investigate gene expression changes in both Mycobacterium tuberculosis, a major human pathogen, and its human host cells, macrophages and dendritic cells. Methodology/Principal Findings In addition to common responses, we could identify eukaryotic and microbial transcriptional signatures that are specific to the cell type involved in the infection process. In particular M. tuberculosis shows a marked stress response when inside dendritic cells, which is in accordance with the low permissivity of these specialized phagocytes to the tubercle bacillus and to other pathogens. In contrast, the mycobacterial transcriptome inside macrophages reflects that of replicating bacteria. On the host cell side, differential responses to infection in macrophages and dendritic cells were identified in genes involved in oxidative stress, intracellular vesicle trafficking and phagosome acidification. Conclusions/Significance This study provides the proof of principle that probing the host and the microbe transcriptomes simultaneously is a valuable means to accessing unique information on host pathogen interactions. Our results also underline the extraordinary plasticity of host cell and pathogen responses to infection, and provide a solid framework to further understand the complex mechanisms involved in immunity to M. tuberculosis and in mycobacterial adaptation to different intracellular environments.


Cell Host & Microbe | 2011

Mycobacterial P1-Type ATPases Mediate Resistance to Zinc Poisoning in Human Macrophages

Hélène Botella; Pascale Peyron; Florence Levillain; Renaud Poincloux; Yannick Poquet; Irène Brandli; Chuan Wang; Ludovic Tailleux; Sylvain Tilleul; Guillaume M. Charrière; Simon J. Waddell; Maria Foti; Geanncarlo Lugo-Villarino; Qian qian Gao; Isabelle Maridonneau-Parini; Philip D. Butcher; Paola Ricciardi Castagnoli; Brigitte Gicquel; Chantal de Chastellier; Olivier Neyrolles

Summary Mycobacterium tuberculosis thrives within macrophages by residing in phagosomes and preventing them from maturing and fusing with lysosomes. A parallel transcriptional survey of intracellular mycobacteria and their host macrophages revealed signatures of heavy metal poisoning. In particular, mycobacterial genes encoding heavy metal efflux P-type ATPases CtpC, CtpG, and CtpV, and host cell metallothioneins and zinc exporter ZnT1, were induced during infection. Consistent with this pattern of gene modulation, we observed a burst of free zinc inside macrophages, and intraphagosomal zinc accumulation within a few hours postinfection. Zinc exposure led to rapid CtpC induction, and ctpC deficiency caused zinc retention within the mycobacterial cytoplasm, leading to impaired intracellular growth of the bacilli. Thus, the use of P1-type ATPases represents a M. tuberculosis strategy to neutralize the toxic effects of zinc in macrophages. We propose that heavy metal toxicity and its counteraction might represent yet another chapter in the host-microbe arms race.


Cellular Microbiology | 2004

Production of phthiocerol dimycocerosates protects Mycobacterium tuberculosis from the cidal activity of reactive nitrogen intermediates produced by macrophages and modulates the early immune response to infection

Cécile Rousseau; Nathalie Winter; Elisabeth Pivert; Yann Bordat; Olivier Neyrolles; Patrick Ave; Michel Huerre; Brigitte Gicquel; Mary Jackson

The growth of Mycobacterium tuberculosis mutants unable to synthesize phthiocerol dimycocerosates (DIMs) was recently shown to be impaired in mouse lungs. However, the precise role of these molecules in the course of infection remained to be determined. Here, we provide evidence that the attenuation of a DIM‐deficient strain takes place during the acute phase of infection in both lungs and spleen of mice, and that this attenuation results in part from the increased sensitivity of the mutant to the cidal activity of reactive nitrogen intermediates released by activated macrophages. We also show that the DIM‐deficient mutant, the growth and survival of which were not impaired within resting macrophages and dendritic cells, induced these cells to secrete more tumour necrosis factor (TNF)‐α and interleukin (IL)‐6 than the wild‐type strain. Although purified DIM molecules by themselves had no effect on the activation of macrophages and dendritic cells in vitro, we found that the proper localization of DIMs in the cell envelope of M. tuberculosis is critical to their biological effects. Thus, our findings suggest that DIM production contributes to the initial growth of M. tuberculosis by protecting it from the nitric oxide‐dependent killing of macrophages and modulating the early immune response to infection.

Collaboration


Dive into the Olivier Neyrolles's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Geanncarlo Lugo-Villarino

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yannick Poquet

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Florence Levillain

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Jérôme Nigou

Paul Sabatier University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge