Olivier Tenaillon
French Institute of Health and Medical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Olivier Tenaillon.
PLOS Biology | 2005
Rebecca Montville; Rémy Froissart; Susanna K. Remold; Olivier Tenaillon; Paul E. Turner
Mutational (genetic) robustness is phenotypic constancy in the face of mutational changes to the genome. Robustness is critical to the understanding of evolution because phenotypically expressed genetic variation is the fuel of natural selection. Nonetheless, the evidence for adaptive evolution of mutational robustness in biological populations is controversial. Robustness should be selectively favored when mutation rates are high, a common feature of RNA viruses. However, selection for robustness may be relaxed under virus co-infection because complementation between virus genotypes can buffer mutational effects. We therefore hypothesized that selection for genetic robustness in viruses will be weakened with increasing frequency of co-infection. To test this idea, we used populations of RNA phage φ6 that were experimentally evolved at low and high levels of co-infection and subjected lineages of these viruses to mutation accumulation through population bottlenecking. The data demonstrate that viruses evolved under high co-infection show relatively greater mean magnitude and variance in the fitness changes generated by addition of random mutations, confirming our hypothesis that they experience weakened selection for robustness. Our study further suggests that co-infection of host cells may be advantageous to RNA viruses only in the short term. In addition, we observed higher mutation frequencies in the more robust viruses, indicating that evolution of robustness might foster less-accurate genome replication in RNA viruses.
G3: Genes, Genomes, Genetics | 2011
Sébastien Wielgoss; Jeffrey E. Barrick; Olivier Tenaillon; Stéphane Cruveiller; Béatrice Chane-Woon-Ming; Claudine Médigue; Richard E. Lenski; Dominique Schneider
The quantification of spontaneous mutation rates is crucial for a mechanistic understanding of the evolutionary process. In bacteria, traditional estimates using experimental or comparative genetic methods are prone to statistical uncertainty and consequently estimates vary by over one order of magnitude. With the advent of next-generation sequencing, more accurate estimates are now possible. We sequenced 19 Escherichia coli genomes from a 40,000-generation evolution experiment and directly inferred the point-mutation rate based on the accumulation of synonymous substitutions. The resulting estimate was 8.9 × 10−11 per base-pair per generation, and there was a significant bias toward increased AT-content. We also compared our results with published genome sequence datasets for other bacterial evolution experiments. Given the power of our approach, our estimate represents the most accurate measure of bacterial base-substitution rates available to date.
Science | 2014
Jessica Plucain; Thomas Hindré; Mickaël Le Gac; Olivier Tenaillon; Stéphane Cruveiller; Claudine Médigue; Nicholas Leiby; William R. Harcombe; Christopher J. Marx; Richard E. Lenski; Dominique Schneider
Serial Mutation Mutations that affect gene function and, ultimately, the phenotype of an organism are grist to the mill of evolution. While examining the genetic basis for a stable polymorphism observed in bacteria during a long-term mutation experiment, Plucain et al. (p. 1366, published online 6 March) identified three specific, successive mutational events exhibiting synergistic epistatic and frequency-dependent interactions that enabled one lineage to invade the other and to be maintained. Thus, a series of specific mutations conferred the invasion phenotype and allowed the use of novel resources only when all mutations were present. The emergence of a stable polymorphism in bacteria involved a multistep process including three specific mutations. Ecological opportunities promote population divergence into coexisting lineages. However, the genetic mechanisms that enable new lineages to exploit these opportunities are poorly understood except in cases of single mutations. We examined how two Escherichia coli lineages diverged from their common ancestor at the outset of a long-term coexistence. By sequencing genomes and reconstructing the genetic history of one lineage, we showed that three mutations together were sufficient to produce the frequency-dependent fitness effects that allowed this lineage to invade and stably coexist with the other. These mutations all affected regulatory genes and collectively caused substantial metabolic changes. Moreover, the particular derived alleles were critical for the initial divergence and invasion, indicating that the establishment of this polymorphism depended on specific epistatic interactions.
Mbio | 2014
Colin Raeside; Joël Gaffé; Daniel E. Deatherage; Olivier Tenaillon; Adam Michael Briska; Ryan N. Ptashkin; Stéphane Cruveiller; Claudine Médigue; Richard E. Lenski; Jeffrey E. Barrick; Dominique Schneider
ABSTRACT Large-scale rearrangements may be important in evolution because they can alter chromosome organization and gene expression in ways not possible through point mutations. In a long-term evolution experiment, twelve Escherichia coli populations have been propagated in a glucose-limited environment for over 25 years. We used whole-genome mapping (optical mapping) combined with genome sequencing and PCR analysis to identify the large-scale chromosomal rearrangements in clones from each population after 40,000 generations. A total of 110 rearrangement events were detected, including 82 deletions, 19 inversions, and 9 duplications, with lineages having between 5 and 20 events. In three populations, successive rearrangements impacted particular regions. In five populations, rearrangements affected over a third of the chromosome. Most rearrangements involved recombination between insertion sequence (IS) elements, illustrating their importance in mediating genome plasticity. Two lines of evidence suggest that at least some of these rearrangements conferred higher fitness. First, parallel changes were observed across the independent populations, with ~65% of the rearrangements affecting the same loci in at least two populations. For example, the ribose-utilization operon and the manB-cpsG region were deleted in 12 and 10 populations, respectively, suggesting positive selection, and this inference was previously confirmed for the former case. Second, optical maps from clones sampled over time from one population showed that most rearrangements occurred early in the experiment, when fitness was increasing most rapidly. However, some rearrangements likely occur at high frequency and may have simply hitchhiked to fixation. In any case, large-scale rearrangements clearly influenced genomic evolution in these populations. IMPORTANCE Bacterial chromosomes are dynamic structures shaped by long histories of evolution. Among genomic changes, large-scale DNA rearrangements can have important effects on the presence, order, and expression of genes. Whole-genome sequencing that relies on short DNA reads cannot identify all large-scale rearrangements. Therefore, deciphering changes in the overall organization of genomes requires alternative methods, such as optical mapping. We analyzed the longest-running microbial evolution experiment (more than 25 years of evolution in the laboratory) by optical mapping, genome sequencing, and PCR analyses. We found multiple large genome rearrangements in all 12 independently evolving populations. In most cases, it is unclear whether these changes were beneficial themselves or, alternatively, hitchhiked to fixation with other beneficial mutations. In any case, many genome rearrangements accumulated over decades of evolution, providing these populations with genetic plasticity reminiscent of that observed in some pathogenic bacteria. Bacterial chromosomes are dynamic structures shaped by long histories of evolution. Among genomic changes, large-scale DNA rearrangements can have important effects on the presence, order, and expression of genes. Whole-genome sequencing that relies on short DNA reads cannot identify all large-scale rearrangements. Therefore, deciphering changes in the overall organization of genomes requires alternative methods, such as optical mapping. We analyzed the longest-running microbial evolution experiment (more than 25 years of evolution in the laboratory) by optical mapping, genome sequencing, and PCR analyses. We found multiple large genome rearrangements in all 12 independently evolving populations. In most cases, it is unclear whether these changes were beneficial themselves or, alternatively, hitchhiked to fixation with other beneficial mutations. In any case, many genome rearrangements accumulated over decades of evolution, providing these populations with genetic plasticity reminiscent of that observed in some pathogenic bacteria.
Molecular Biology and Evolution | 2016
Matteo Figliuzzi; Hervé Jacquier; Alexander Schug; Olivier Tenaillon; Martin Weigt
The quantitative characterization of mutational landscapes is a task of outstanding importance in evolutionary and medical biology: It is, for example, of central importance for our understanding of the phenotypic effect of mutations related to disease and antibiotic drug resistance. Here we develop a novel inference scheme for mutational landscapes, which is based on the statistical analysis of large alignments of homologs of the protein of interest. Our method is able to capture epistatic couplings between residues, and therefore to assess the dependence of mutational effects on the sequence context where they appear. Compared with recent large-scale mutagenesis data of the beta-lactamase TEM-1, a protein providing resistance against beta-lactam antibiotics, our method leads to an increase of about 40% in explicative power as compared with approaches neglecting epistasis. We find that the informative sequence context extends to residues at native distances of about 20 Å from the mutated site, reaching thus far beyond residues in direct physical contact.
Evolution | 2014
François Blanquart; Guillaume Achaz; Thomas Bataillon; Olivier Tenaillon
The fitness landscape—the mapping between genotypes and fitness—determines properties of the process of adaptation. Several small genotypic fitness landscapes have recently been built by selecting a handful of beneficial mutations and measuring fitness of all combinations of these mutations. Here, we generate several testable predictions for the properties of these small genotypic landscapes under Fishers geometric model of adaptation. When the ancestral strain is far from the fitness optimum, we analytically compute the fitness effect of selected mutations and their epistatic interactions. Epistasis may be negative or positive on average depending on the distance of the ancestral genotype to the optimum and whether mutations were independently selected, or coselected in an adaptive walk. Simulations show that genotypic landscapes built from Fishers model are very close to an additive landscape when the ancestral strain is far from the optimum. However, when it is close to the optimum, a large diversity of landscape with substantial roughness and sign epistasis emerged. Strikingly, small genotypic landscapes built from several replicate adaptive walks on the same underlying landscape were highly variable, suggesting that several realizations of small genotypic landscapes are needed to gain information about the underlying architecture of the fitness landscape.
Frontiers in Genetics | 2015
Alejandro Couce; Olivier Tenaillon
One of the most recurrent observations after two decades of microbial evolution experiments regards the dynamics of fitness change. In a given environment, low-fitness genotypes are recurrently observed to adapt faster than their more fit counterparts. Since adaptation is the main macroscopic outcome of Darwinian evolution, studying its patterns of change could potentially provide insight into key issues of evolutionary theory, from fixation dynamics to the genetic architecture of organisms. Here, we re-analyze several published datasets from experimental evolution with microbes and show that, despite large differences in the origin of the data, a pattern of inverse dependence of adaptability with fitness clearly emerges. In quantitative terms, it is remarkable to observe little if any degree of idiosyncrasy across systems as diverse as virus, bacteria and yeast. The universality of this phenomenon suggests that its emergence might be understood from general principles, giving rise to the exciting prospect that evolution might be statistically predictable at the macroscopic level. We discuss these possibilities in the light of the various theories of adaptation that have been proposed and delineate future directions of research.
DNA Repair | 2003
Ivana Bjedov; Guillaume Lecointre; Olivier Tenaillon; Christelle Vaury; Miroslav Radman; François Taddei; Erick Denamur; Ivan Matic
High fidelity replicative DNA polymerases can be blocked during DNA replication by various base damages, which represents a potentially lethal event. Escherichia coli possesses three DNA polymerases, PolII, PolIV and PolV, that can continue replication over such lesions in template DNA, thus allowing for cell survival. Genes coding for these enzymes, polB, dinB, and umuCD respectively, belong to the stress-inducible SOS regulon. We have analyzed the patterns of nucleotide sequence variability of genes encoding for three SOS polymerases from E. coli natural isolates in order to identify the nature of selective forces that determine their evolution. The frequency of inferred inter-strain recombination events, and the frequency of synonymous and non-synonymous base substitutions within these genes do not deviate significantly from those observed for the control group composed of 2 genes coding for DNA polymerases PolI and PolIII and 10 metabolic genes. This suggests that the loci coding for SOS polymerases are subject to selective pressure for the maintenance of their function and specificity. The fact that genes coding for translesion-synthesis (TLS) polymerases, particularly dinB and umuC homologs, have been conserved during evolution and the present analysis suggest that their activity is essential for the cellular survival and fitness.
Infection and Immunity | 2013
Alexandre Bleibtreu; Pierre-Alexis Gros; Cédric Laouénan; Olivier Clermont; Hervé Le Nagard; Bertrand Picard; Olivier Tenaillon; Erick Denamur
ABSTRACT The extraintestinal virulence of Escherichia coli is dependent on numerous virulence genes. However, there is growing evidence for a role of the metabolic properties and stress responses of strains in pathogenesis. We assessed the respective roles of these factors in strain virulence by developing phenotypic assays for measuring in vitro individual and competitive fitness and the general stress response, which we applied to 82 commensal and extraintestinal pathogenic E. coli strains previously tested in a mouse model of sepsis. Individual fitness properties, in terms of maximum growth rates in various media (Luria-Bertani broth with and without iron chelator, minimal medium supplemented with gluconate, and human urine) and competitive fitness properties, estimated as the mean relative growth rate per generation in mixed cultures with a reference fluorescent E. coli strain, were highly diverse between strains. The activity of the main general stress response regulator, RpoS, as determined by iodine staining of the colonies, H2O2 resistance, and rpoS sequencing, was also highly variable. No correlation between strain fitness and stress resistance and virulence in the mouse model was found, except that the maximum growth rate in urine was higher for virulent strains. Multivariate analysis showed that the number of virulence factors was the only independent factor explaining the virulence in mice. At the species level, growth capacity and stress resistance are heterogeneous properties that do not contribute significantly to the intrinsic virulence of the strains.
BMC Genomics | 2013
Ram P. Maharjan; Joël Gaffé; Jessica Plucain; Martin Schliep; Lei Wang; Lu Feng; Olivier Tenaillon; Thomas Ferenci; Dominique Schneider
BackgroundDNA duplications constitute important precursors for genome variation. Here we analyzed an unequal duplication harboring a beneficial mutation that may provide alternative evolutionary outcomes.ResultsWe characterized this evolutionary event during experimental evolution for only 100 generations of an Escherichia coli strain under glucose limitation within chemostats. By combining Insertion Sequence based Restriction Length Polymorphism experiments, pulsed field gel electrophoresis and two independent genome re-sequencing experiments, we identified an evolved lineage carrying a 180 kb duplication of the 46’ region of the E. coli chromosome. This evolved duplication revealed a heterozygous state, with one copy harboring a 2668 bp deletion that included part of the ogrK gene and both the yegR and yegS genes. By genetically manipulating ancestral and evolved strains, we showed that the single yegS inactivation was sufficient to confer a frequency dependent fitness increase under the chemostat selective conditions in both the ancestor and evolved genetic contexts, implying that the duplication itself was not a direct fitness contributor. Nonetheless, the heterozygous duplicated state was relatively stable in the conditions prevailing during evolution in chemostats, in striking contrast to non selective conditions in which the duplication resolved at high frequency into either its ancestral or deleted copy.ConclusionsOur results suggest that the duplication state may constitute a second order selection process providing higher evolutionary potential. Moreover, its heterozygous nature may provide differential evolutionary opportunities in alternating environments. Our results also highlighted how careful analyses of whole genome data are needed to identify such complex rearrangements.