Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olle Lundh is active.

Publication


Featured researches published by Olle Lundh.


Applied Physics Letters | 2006

Enhanced proton beams from ultrathin targets driven by high contrast laser pulses

D. Neely; P. S. Foster; A. P. L. Robinson; Filip Lindau; Olle Lundh; Anders Persson; Claes-Göran Wahlström; P. McKenna

The generation of proton beams from ultrathin targets, down to 20 nm in thickness, driven with ultrahigh contrast laser pulses is explored. the conversion efficiency from laser energy into protons increases as the foil thickness is decreased, with good beam quality and high efficiencies of 1% being achieved, for protons with kinetic energy exceeding 0.9 MeV, for 100 nm thick aluminum foils at intensities of 10(19) W/cm(2) with 33 fs, 0.3 J pulses. To minimize amplified spontaneous emission (ASE) induced effects disrupting the acceleration mechanism, exceptional laser to ASE intensity contrasts of up to 1010 are achieved by introducing a plasma mirror to the high contrast 10 Hz multiterawatt laser at the Lund Laser Centre. It is shown that for a given laser energy on target, regimes of higher laser-to-proton energy conversion efficiency. can be accessed with increasing contrast. The increasing efficiency as the target thickness decreases is closely correlated to an increasing proton temperature. (c) 2006 American Institute of Physics.


Review of Scientific Instruments | 2009

Radiochromic film imaging spectroscopy of laser-accelerated proton beams

F. Nuernberg; Marius Schollmeier; E. Brambrink; A. Blazevic; D. C. Carroll; K. A. Flippo; D. C. Gautier; Matthias Geissel; K. Harres; B. M. Hegelich; Olle Lundh; K. Markey; P. McKenna; D. Neely; Jörg Schreiber; Markus Roth

This article reports on an experimental method to fully reconstruct laser-accelerated proton beam parameters called radiochromic film imaging spectroscopy (RIS). RIS allows for the characterization of proton beams concerning real and virtual source size, envelope- and microdivergence, normalized transverse emittance, phase space, and proton spectrum. This technique requires particular targets and a high resolution proton detector. Therefore thin gold foils with a microgrooved rear side were manufactured and characterized. Calibrated GafChromic radiochromic film (RCF) types MD-55, HS, and HD-810 in stack configuration were used as spatial and energy resolved film detectors. The principle of the RCF imaging spectroscopy was demonstrated at four different laser systems. This can be a method to characterize a laser system with respect to its proton-acceleration capability. In addition, an algorithm to calculate the spatial and energy resolved proton distribution has been developed and tested to get a better idea of laser-accelerated proton beams and their energy deposition with respect to further applications.


Laser and Particle Beams | 2008

Effects of front surface plasma expansion on proton acceleration in ultraintense laser irradiation of foil targets

P. McKenna; D. C. Carroll; Olle Lundh; F. Nürnberg; K. Markey; S. Bandyopadhyay; D. Batani; R. G. Evans; R. Jafer; S. Kar; D. Neely; D. Pepler; M. N. Quinn; R. Redaelli; Markus Roth; C.-G. Wahlstrom; Xiaohui Yuan; Matthew Zepf

The properties of beams of high energy protons accelerated during ultraintense, picosecond laser-irradiation of thin foil targets are investigated as a function of preplasma expansion at the target front surface. Significant enhancement in the maximum proton energy and laser-to-proton energy conversion efficiency is observed at optimum preplasma density gradients, due to self-focusing of the incident laser pulse. For very long preplasma expansion, the propagating laser pulse is observed to filament, resulting in highly uniform proton beams, but with reduced flux and maximum energy.


Physics of Plasmas | 2007

On the stability of laser wakefield electron accelerators in the monoenergetic regime

S. P. D. Mangles; A. G. R. Thomas; Olle Lundh; Filip Lindau; Malte C. Kaluza; Anders Persson; Claes-Göran Wahlström; K. Krushelnick; Z. Najmudin

The effects of plasma density and laser energy on the stability of laser produced monoenergetic electron beams are investigated. Fluctuations in the principal beam parameters, namely, electron energy, energy-spread, charge, and pointing, are demonstrated to be minimized at low densities. This improvement in stability is attributed to the reduced time for pulse evolution required before self-injection occurs; i.e., that the pulse is closest to the matched conditions for these densities. It is also observed that electrons are only consistently produced above a density-dependent energy threshold. These observations are consistent with there being a threshold intensity (a0≳3) required for the occurrence of self-injection after accounting for pulse compression.


Plasma Physics and Controlled Fusion | 2006

Effect of laser contrast ratio on electron beam stability in laser wakefield acceleration experiments

S. P. D. Mangles; A. G. R. Thomas; Malte C. Kaluza; Olle Lundh; Filip Lindau; Anders Persson; Z. Najmudin; C.-G. Wahlstrom; C. D. Murphy; Christos Kamperidis; K. L. Lancaster; E. J. Divall; K. Krushelnick

Laser wakefield accelerators offer the possibility of compact electron acceleration. However one of the key outstanding issues with the results reported to date is the electron beam stability. Experiments on two laser systems reveal that the contrast ratio between the ASE pedestal and main pulse is an important factor in determining the quality of the electron beam. With a high contrast ratio (10^8) the electron beam profile is a well collimated single beam having a low pointing instability (<10 mrad rms). With a lower contrast (10^6) the beam profile contains multiple beamlets which exhibit a large pointing instability (~50 mrad rms). Ahigh contrast ratio not only improves the beam pointing stability (~6 mrad) but also stabilizes the electron beam energy reproducibility (5%). (Less)


Philosophical transactions - Royal Society. Mathematical, physical and engineering sciences | 2006

High-intensity laser-driven proton acceleration : influence of pulse contrast

P. McKenna; Filip Lindau; Olle Lundh; D. Neely; Anders Persson; Claes-Göran Wahlström

Proton acceleration from the interaction of ultra-short laser pulses with thin foil targets at intensities greater than 1018 W cm−2 is discussed. An overview of the physical processes giving rise to the generation of protons with multi-MeV energies, in well defined beams with excellent spatial quality, is presented. Specifically, the discussion centres on the influence of laser pulse contrast on the spatial and energy distributions of accelerated proton beams. Results from an ongoing experimental investigation of proton acceleration using the 10 Hz multi-terawatt Ti : sapphire laser (35 fs, 35 TW) at the Lund Laser Centre are discussed. It is demonstrated that a window of amplified spontaneous emission (ASE) conditions exist, for which the direction of proton emission is sensitive to the ASE-pedestal preceding the peak of the laser pulse, and that by significantly improving the temporal contrast, using plasma mirrors, efficient proton acceleration is observed from target foils with thickness less than 50 nm.


Optics Letters | 2007

Optimization toward a high-average-brightness soft-x-ray laser pumped at grazing incidence

K. Cassou; S. Kazamias; D. Ros; F. Ple; G. Jamelot; A. Klisnick; Olle Lundh; Filip Lindau; Anders Persson; Claes-Göran Wahlström; S. de Rossi; D. Joyeux; B. Zielbauer; D. Ursescu; Thomas Kuehl

We report the near-field imaging characterization of a 10 Hz Ni-like 18.9 nm molybdenum soft-x-ray laser pumped in a grazing incidence pumping (GRIP) geometry with a table-top laser driver. We investigate the effect of varying the GRIP angle on the spatial behavior of the soft-x-ray laser source. After multiparameter optimization, we were able to find conditions to generate routinely a high-repetition-rate soft-x-ray laser with an energy level of up to 3 microJ/pulse and to 6x10(17) photons/s/mm2/mrad2/(0.1% bandwidth) average brightness and 1x10(28) photons/s/mm2/mrad2/(0.1% bandwidth) peak brightness.


Plasma Physics and Controlled Fusion | 2007

Low- and medium-mass ion acceleration driven by petawatt laser plasma interactions

P. McKenna; Filip Lindau; Olle Lundh; D. C. Carroll; Rosemary Clarke; Kwd Ledingham; T. McCanny; D. Neely; A. P. L. Robinson; L. Robson; P.T. Simpson; Claes-Göran Wahlström; M. Zepf

An experimental investigation of low- and medium-mass ion acceleration from resistively heated thin foil targets, irradiated by picosecond laser pulses at intensities up to 5 × 1020 W cm−2, is reported. It is found that the spectral distributions of ions, up to multi-MeV/nucleon energies, accelerated from the rear surface of the target are broadly consistent with previously reported measurements made at intensities up to 5 × 1019 W cm−2. Properties of the backward-directed beams of ions accelerated from the target front surface are also measured, and it is found that, compared with the rear surface, higher ion numbers and charges, and similar ion energies are produced. Additionally, the scaling of the maximum ion energy as a function of ion charge and laser intensity are measured and compared with the predictions of a numerical model.


Physical Review E | 2009

Laser-driven plasma waves in capillary tubes

F. Wojda; K. Cassou; Guillaume Genoud; Matthias Burza; Yannick Glinec; Olle Lundh; Anders Persson; G. Vieux; E. Brunetti; Richard P. Shanks; D. A. Jaroszynski; N. E. Andreev; Claes-Göran Wahlström; B. Cros

The excitation of plasma waves over a length of up to 8 cm is demonstrated using laser guiding of intense laser pulses through hydrogen-filled glass capillary tubes. The plasma waves are diagnosed by spectral analysis of the transmitted laser radiation. The dependence of the spectral redshift-measured as a function of filling pressure, capillary tube length, and incident laser energy-is in excellent agreement with simulation results. The longitudinal accelerating field inferred from the simulations is in the range of 1-10 GV/m.


New Journal of Physics | 2010

Effects of laser prepulses on laser-induced proton generation

D. Batani; R. Jafer; M. Veltcheva; R. Dezulian; Olle Lundh; Filip Lindau; Anders Persson; K. Osvay; C.-G. Wahlstrom; D. C. Carroll; P. McKenna; Alessandro Flacco; Victor Malka

Low-intensity laser prepulses (<10(13) W cm(-2), nanosecond duration) are a major issue in experiments on laser-induced generation of protons, often limiting the performances of proton sources produced by high-intensity lasers (approximate to 10(19) W cm(-2), picosecond or femtosecond duration). Depending on the intensity regime, several effects may be associated with the prepulse, some of which are discussed in this paper: (i) destruction of thin foil targets by the shock generated by the laser prepulse; (ii) creation of preplasma on the target front side affecting laser absorption; (iii) deformation of the target rear side; and (iv) whole displacement of thin foil targets affecting the focusing condition. In particular, we show that under oblique high-intensity irradiation and for low prepulse intensities, the proton beam is directed away from the target normal. Deviation is towards the laser forward direction, with an angle that increases with the level and duration of the ASE pedestal. Also, for a given laser pulse, the beam deviation increases with proton energy. The observations are discussed in terms of target normal sheath acceleration, in combination with a laser-controllable shock wave locally deforming the target surface.

Collaboration


Dive into the Olle Lundh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. McKenna

University of Strathclyde

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Neely

Rutherford Appleton Laboratory

View shared research outputs
Top Co-Authors

Avatar

B. Cros

Université Paris-Saclay

View shared research outputs
Top Co-Authors

Avatar

D. C. Carroll

Rutherford Appleton Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. Cassou

University of Paris-Sud

View shared research outputs
Researchain Logo
Decentralizing Knowledge