Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Oluseyi O. Fatanmi is active.

Publication


Featured researches published by Oluseyi O. Fatanmi.


Radiation Research | 2012

α-Tocopherol Succinate Protects Mice against Radiation-Induced Gastrointestinal Injury

Pankaj K. Singh; Stephen Y. Wise; Elizabeth J. Ducey; Oluseyi O. Fatanmi; Thomas B. Elliott; Vijay K. Singh

The purpose of this study was to elucidate the role of α-tocopherol succinate (α-TS) in protecting mice from gastrointestinal syndrome induced by total-body irradiation. CD2F1 mice were injected subcutaneously with 400 mg/kg of α-TS and exposed to different doses of 60Co γ radiation, and 30-day survival was monitored. Jejunum sections were analyzed for crypts and villi, PUMA (p53 upregulated modulator of apoptosis), and apoptosis (terminal deoxynucleotidyl transferase dUTP nick end labeling – TUNEL). The crypt regeneration in irradiated mice was evaluated by 5-bromo-2-deoxyuridine (BrdU). Bacterial translocation from gut to heart, spleen and liver in α-TS-treated and irradiated mice was evaluated by bacterial culture on sheep blood agar, colistin-nalidixic acid, and xylose-lysine-desoxycholate medium. Our results demonstrate that α-TS enhanced survival in a significant number of mice irradiated with 9.5, 10, 11 and 11.5 Gy 60Co γ radiation when administered 24 h before radiation exposure. α-TS also protected the intestinal tissue of irradiated mice in terms of crypt and villus number, villus length and mitotic figures. TS treatment decreased the number of TUNEL- and PUMA-positive cells and increased the number of BrdU-positive cells in jejunum compared to vehicle-treated mice. Further, α-TS inhibited gut bacterial translocation to the heart, spleen and liver in irradiated mice. Our data suggest that α-TS protects mice from radiation-induced gastrointestinal damage by inhibiting apoptosis, promoting regeneration of crypt cells, and inhibiting translocation of gut bacteria.


Cytokine | 2012

Role of radiation-induced granulocyte colony-stimulating factor in recovery from whole body gamma-irradiation

Vijay K. Singh; Oluseyi O. Fatanmi; Pankaj K. Singh; Mark H. Whitnall

The purpose of this study was to further elucidate the radioprotective role of granulocyte colony-stimulating factor (G-CSF) induced in response to irradiation. The induction of G-CSF and interleukin-6 (IL-6) in response to radiation exposure was evaluated in mice. The level of cytokine in serum was determined by multiplex Luminex. The role of G-CSF on survival and tissue injury after total body gamma-irradiation was evaluated by administration of neutralizing antibody to G-CSF before radiation exposure. An isotype control was used for comparison and survival was monitored for 30 d after irradiation. Jejunum samples were used for immunohistochemistry. Ionizing radiation exposure induced significant levels of the hematopoietic cytokines G-CSF and IL-6, in mice receiving 9.2 Gy radiation. Maximal levels of G-CSF were observed in peripheral blood of mice 8h after irradiation. IL-6 levels were maximum at 12h after irradiation. Administration of G-CSF antibody significantly enhanced mortality in irradiated mice. G-CSF antibody-treated mice had higher numbers of CD68(+) cells and apoptotic cells in intestinal villi. Our results confirm that radiation exposure induces elevations of circulating G-CSF and IL-6. Neutralizing antibody to G-CSF exacerbates the deleterious effects of radiation, indicating that G-CSF induced in response to irradiation plays an important role in recovery.


Radiation Research | 2012

CBLB613: A TLR 2/6 agonist, natural lipopeptide of mycoplasma arginini, as a novel radiation countermeasure

Vijay K. Singh; Elizabeth J. Ducey; Oluseyi O. Fatanmi; Pankaj K. Singh; Darren S. Brown; Andrei Purmal; Vera V. Shakhova; Andrei V. Gudkov; Elena Feinstein; Alexander N. Shakhov

To date, there are no safe and effective drugs available for protection against ionizing radiation damage. Therefore, a great need exists to identify and develop non-toxic agents that will be useful as radioprotectors or postirradiation therapies under a variety of operational scenarios. We have developed a new pharmacological agent, CBLB613 (a naturally occurring Mycoplasma-derived lipopeptide ligand for Toll-like receptor 2/6), as a novel radiation countermeasure. Using CD2F1 mice, we investigated CBLB613 for toxicity, immunogenicity, radioprotection, radiomitigation and pharmacokinetics. We also evaluated CBLB613 for its effects on cytokine induction and radiation-induced cytopenia in unirradiated and irradiated mice. The no-observable-adverse-effect level of CBLB613 was 1.79 mg/kg and 1 mg/kg for single and repeated doses, respectively. CBLB613 significantly protected mice against a lethal dose of 60Co γ radiation. The dose reduction factor of CBLB613 as a radioprotector was 1.25. CBLB613 also mitigated the effects of 60Co γ radiation on survival in mice. In both irradiated and unirradiated mice, the drug stimulated induction of interleukin-1β (IL-1β), IL-6, IL-10, IL-12, keratinocyte-derived chemokine, granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, and tumor necrosis factor-1α. CBLB613 also reduced radiation-induced cytopenia and increased bone marrow cellularity in irradiated mice. Our immunogenicity study demonstrated that CBLB613 is not immunogenic in mice, indicating that it could be developed as a radioprotector and radiomitigator for humans against the potentially lethal effects of radiation exposure.


Radiation Research | 2012

Myeloid Progenitors: A Radiation Countermeasure that is Effective when Initiated Days after Irradiation

Vijay K. Singh; Oluseyi O. Fatanmi; Daphne Gille; Elizabeth J. Ducey; Stephen Y. Wise; Holger Karsunky; Anna K. Sedello

The aim of this study was to elucidate the potential of mouse myeloid progenitor cells (mMPC) to mitigate lethal doses of 60Co γ radiation and X rays in various strains of mice. Different cell doses of pooled allogeneic mMPC generated ex vivo from AKR, C57Bl/6, and FVB mice were transfused intravenously into haplotype-mismatched recipient Balb/c or CD2F1 mice at various times after irradiation to assess their effect on 30-day survival. Our results show that cryopreserved allogeneic mMPC significantly improve survival in both strains of mice irradiated with lethal doses of 60Co γ radiation (CD2F1, 9.2 Gy) and X-ray exposures (Balb/c, 9 Gy) that are known to cause acute radiation syndrome in hematopoietic tissues. Survival benefit was mMPC-dose dependent and significant even when mMPC administration was delayed up to 7 days after irradiation. We further show that mMPC administration mitigates death from acute radiation syndrome at radiation doses of up to 15 Gy (60Co γ radiation, CD2F1), which are radiation exposure levels that cause mice to succumb to multi-organ failure, and determined that the dose-reduction factor of 5 million mMPC administered 24 h after irradiation of CD2F1 mice is 1.73. Even at high doses of up to 14 Gy 60Co γ radiation, mMPC administration could be delayed up to 5 days in CD2F1 mice and still provide significant benefit to 30-day survival. These results demonstrate that mMPC are a promising radiation countermeasure with the potential to mitigate radiation injury in unmatched recipients across a broad range of lethal radiation doses, even when administration is delayed days after radiation exposure. With respect to efficacy, timing, and practicality of administration, mMPC appear to be a very promising radiation countermeasure for acute radiation syndrome among all candidate therapeutics currently under development.


Life Sciences | 2014

Radioprotective efficacy of delta-tocotrienol, a vitamin E isoform, is mediated through granulocyte colony-stimulating factor

Vijay K. Singh; Stephen Y. Wise; Jessica Scott; Patricia L.P. Romaine; Victoria L. Newman; Oluseyi O. Fatanmi

AIMS The objectives of this study were to determine the cytokine induction by delta tocotrienol (DT3, a promising radiation countermeasure) and to investigate the role of granulocyte colony-stimulating factor (G-CSF) in its radioprotective efficacy against ionizing radiation in mice. MAIN METHODS Multiplex Luminex was used to analyze cytokines induced by DT3 and other tocols (gamma-tocotrienol and tocopherol succinate) in CD2F1 mice. Mice were injected with an optimal dose of DT3 and a G-CSF antibody, and their 30-day survival against cobalt-60 gamma-irradiation was monitored. The neutralization of G-CSF by the administration of a G-CSF-specific antibody in DT3-injected mice was investigated by multiplex Luminex. KEY FINDINGS Our data demonstrate that DT3 induced high levels of various cytokines comparable to other tocols being developed as radiation countermeasures. DT3 significantly protected mice against ionizing radiation, and the administration of a G-CSF neutralizing antibody to DT3-treated animals resulted in the complete abrogation of DT3s radioprotective efficacy and neutralization of G-CSF in peripheral blood. SIGNIFICANCE Our study findings suggest that G-CSF induced by DT3 mediates its radioprotective efficacy against ionizing radiation in mice.


Journal of Radiation Research | 2013

Radioprotective properties of tocopherol succinate against ionizing radiation in mice

Vijay K. Singh; Pankaj K. Singh; Stephen Y. Wise; Ana Posarac; Oluseyi O. Fatanmi

Threats of nuclear and other radiologic exposures have been increasing but no countermeasure for acute radiation syndrome has been approved by regulatory authorities. In prior publications we have demonstrated the efficacy of tocopherol succinate (TS) as a promising radiation countermeasure with the potential to protect against lethal doses of ionizing radiation exposure. The aim of this study was to gain further insight regarding how TS protects mice against a lethal dose of radiation. CD2F1 mice were injected subcutaneously with 400 mg/kg of TS, and 24 h later exposed to 60Co γ–radiation. Intestinal tissues or spleen/thymus were harvested after irradiation and analyzed for CD68-positive inflammatory cells and apoptotic cells by immunostaining of jejunal cross-sections. Comet assay was used to analyze DNA damage in various tissues. Phospho-histone H3(pH3) and the proliferating cell nuclear antigen (PCNA) were used as mitotic markers for immunostaining jejunal cross-sections. We observed that injecting TS significantly decreased the number of CD68-positive cells, DNA damage and apoptotic cells (BAX, caspase 3 and cleaved poly(ADP-ribose) polymerase-positive cells) as judged by various apoptotic pathway markers. TS treatment also increased proliferating cells in irradiated mice. Results of this study further support our contention that TS protects mice against lethal doses of ionizing radiation by inhibiting radiation-induced apoptosis and DNA damage while enhancing cell proliferation.


Radiation Research | 2016

Radioprotective Efficacy of Gamma-Tocotrienol in Nonhuman Primates

Vijay K. Singh; Shilpa Kulkarni; Oluseyi O. Fatanmi; Stephen Y. Wise; Victoria L. Newman; Patricia L.P. Romaine; Howard P. Hendrickson; Jatinder Gulani; Sanchita P. Ghosh; K. Sree Kumar; Martin Hauer-Jensen

The search for treatments to counter potentially lethal radiation-induced injury over the past several decades has led to the development of multiple classes of radiation countermeasures. However, to date only granulocyte colony-stimulating factor (G-CSF; filgrastim, Neupogen)and pegylated G-CSF (pegfilgrastim, Neulasta) have been approved by the United States Food and Drug Administration (FDA) for the treatment of hematopoietic acute radiation syndrome (ARS). Gamma-tocotrienol (GT3) has demonstrated strong radioprotective efficacy in the mouse model, indicating the need for further evaluation in a large animal model. In this study, we evaluated GT3 pharmacokinetics (PK) and efficacy at different doses of cobalt-60 gamma radiation (0.6 Gy/min) using the nonhuman primate (NHP) model. The PK results demonstrated increased area under the curve with increasing drug dose and half-life of GT3. GT3 treatment resulted in reduced group mean neutropenia by 3–5 days and thrombocytopenia by 1–5 days. At 5.8 and 6.5 Gy total-body irradiation, GT3 treatment completely prevented thrombocytopenia. The capability of GT3 to reduce severity and duration of neutropenia and thrombocytopenia was dose dependent; 75 mg/kg treatment was more effective than 37.5 mg/kg treatment after a 5.8 Gy dose. However, the higher GT3 dose (75 mg/kg) was associated with higher frequency of adverse skin effects (small abscess) at the injection site. GT3 treatment of irradiated NHPs caused no significant difference in animal survival at 60 days postirradiation, however, low mortality was observed in irradiated, vehicle-treated groups as well. The data from this pilot study further elucidate the role and pharmacokinetics of GT3 in hematopoietic recovery after irradiation in a NHP model, and demonstrate the potential of GT3 as a promising radioprotector.


PLOS ONE | 2014

Progenitors mobilized by gamma-tocotrienol as an effective radiation countermeasure.

Vijay K. Singh; Stephen Y. Wise; Oluseyi O. Fatanmi; Jessica Scott; Patricia L.P. Romaine; Victoria L. Newman; Amit Verma; Thomas B. Elliott; Thomas M. Seed

The purpose of this study was to elucidate the role of gamma-tocotrienol (GT3)-mobilized progenitors in mitigating damage to mice exposed to a supralethal dose of cobalt-60 gamma-radiation. CD2F1 mice were transfused 24 h post-irradiation with whole blood or isolated peripheral blood mononuclear cells (PBMC) from donors that had received GT3 72 h prior to blood collection and recipient mice were monitored for 30 days. To understand the role of GT3-induced granulocyte colony-stimulating factor (G-CSF) in mobilizing progenitors, donor mice were administered a neutralizing antibody specific to G-CSF or its isotype before blood collection. Bacterial translocation from gut to heart, spleen and liver of irradiated recipient mice was evaluated by bacterial culture on enriched and selective agar media. Endotoxin in serum samples also was measured. We also analyzed the colony-forming units in the spleens of irradiated mice. Our results demonstrate that whole blood or PBMC from GT3-administered mice mitigated radiation injury when administered 24 h post-irradiation. Furthermore, administration of a G-CSF antibody to GT3-injected mice abrogated the efficacy of blood or PBMC obtained from such donors. Additionally, GT3-mobilized PBMC inhibited the translocation of intestinal bacteria to the heart, spleen, and liver, and increased colony forming unit-spleen (CFU-S) numbers in irradiated mice. Our data suggests that GT3 induces G-CSF, which mobilizes progenitors and these progenitors mitigate radiation injury in recipient mice. This approach using mobilized progenitor cells from GT3-injected donors could be a potential treatment for humans exposed to high doses of radiation.


International Journal of Radiation Biology | 2013

Alpha-tocopherol succinate-mobilized progenitors improve intestinal integrity after whole body irradiation

Vijay K. Singh; Stephen Y. Wise; Pankaj K. Singh; Ana Posarac; Oluseyi O. Fatanmi; Elizabeth J. Ducey; David L. Bolduc; Thomas B. Elliott; Thomas M. Seed

Abstract Purpose: The objective of this study was to elucidate the action of α-tocopherol succinate (TS)- and AMD3100-mobilized progenitors in mitigating radiation-induced injuries. Material and methods: CD2F1 mice were exposed to a high dose of radiation and then transfused intravenously with 5 million peripheral blood mononuclear cells (PBMC) from TS- and AMD3100-injected mice after irradiation. Intestinal and splenic tissues were harvested after irradiation and cells of those tissues were analyzed for markers of apoptosis and mitosis. Bacterial translocation from gut to heart, spleen, and liver in TS-treated and irradiated mice was evaluated by bacterial culture. Results: We observed that the infusion of PBMC from TS- and AMD3100-injected mice significantly inhibited apoptosis, increased cell proliferation in the analyzed tissues of recipient mice, and inhibited bacterial translocation to various organs compared to mice receiving cells from vehicle-mobilized cells. This study further supports our contention that the infusion of TS-mobilized progenitor-containing PBMC acts as a bridging therapy by inhibiting radiation-induced apoptosis, enhancing cell proliferation, and inhibiting bacterial translocation in irradiated mice. Conclusions: We suggest that this novel bridging therapeutic approach that involves the infusion of TS-mobilized hematopoietic progenitors following acute radiation injury might be applicable to humans as well.


Experimental Hematology | 2012

α-Tocopherol succinate- and AMD3100-mobilized progenitors mitigate radiation-induced gastrointestinal injury in mice.

Vijay K. Singh; Stephen Y. Wise; Pankaj K. Singh; Elizabeth J. Ducey; Oluseyi O. Fatanmi; Thomas M. Seed

The goal of this study was to elucidate the role of α-tocopherol succinate (TS)- and AMD3100-mobilized progenitors in mitigating the ionizing-radiation-induced gastrointestinal syndrome in mice. We demonstrate the efficacy of a bridging therapy that will allow the lymphohematopoietic system of severely immunocompromised victims exposed to ionizing radiation to recover from high doses of radiation. CD2F1 mice were irradiated with a high dose of radiation causing gastrointestinal syndrome (11 Gy, cobalt-60 γ-radiation) and then transfused intravenously (retro-orbital sinus) with whole blood or peripheral blood mononuclear cells (PBMC) from TS- and AMD3100-injected mice 2, 24, or 48 hours post irradiation and monitored for 30-day survival. Jejunum sections were analyzed for tissue area, surviving crypts, villi, mitotic figures, and basal lamina enterocytes. Our results demonstrate that infusion of whole blood or PBMC from TS- and AMD3100-injected mice significantly improved survival of mice receiving a high dose of radiation. Histopathology and immunostaining of jejunum from irradiated and TS- and AMD3100-mobilized PBMC-transfused mice reveal significant protection of gastrointestinal tissue from radiation injury. We demonstrate that TS and AMD3100 mobilize progenitors into peripheral circulation and that the infusion of mobilized progenitor-containing blood or PBMC acts as a bridging therapy for immune-system recovery in mice exposed to high, potentially fatal, doses of ionizing radiation.

Collaboration


Dive into the Oluseyi O. Fatanmi's collaboration.

Top Co-Authors

Avatar

Vijay K. Singh

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Stephen Y. Wise

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Elizabeth J. Ducey

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Pankaj K. Singh

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Patricia L.P. Romaine

Armed Forces Radiobiology Research Institute

View shared research outputs
Top Co-Authors

Avatar

Thomas M. Seed

Armed Forces Radiobiology Research Institute

View shared research outputs
Top Co-Authors

Avatar

Victoria L. Newman

Armed Forces Radiobiology Research Institute

View shared research outputs
Top Co-Authors

Avatar

Thomas B. Elliott

Armed Forces Radiobiology Research Institute

View shared research outputs
Top Co-Authors

Avatar

Amit Verma

Armed Forces Radiobiology Research Institute

View shared research outputs
Top Co-Authors

Avatar

Ana Posarac

Uniformed Services University of the Health Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge