Omar A. Almaghrabi
King Abdulaziz University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Omar A. Almaghrabi.
Persoonia | 2015
J. B. Stielow; C.A. Lévesque; Keith A. Seifert; Wieland Meyer; Laszlo Irinyi; D. Smits; R. Renfurm; G.J.M. Verkley; Marizeth Groenewald; D. Chaduli; A. Lomascolo; S. Welti; L. Lesage-Meessen; A. Favel; Abdullah M. S. Al-Hatmi; Ulrike Damm; N. Yilmaz; Jos Houbraken; Lorenzo Lombard; W. Quaedvlieg; M. Binder; L.A.I. Vaas; D. Vu; Andrey Yurkov; Dominik Begerow; O. Roehl; Marco A. Guerreiro; Álvaro Fonseca; K. Samerpitak; A.D. van Diepeningen
The aim of this study was to assess potential candidate gene regions and corresponding universal primer pairs as secondary DNA barcodes for the fungal kingdom, additional to ITS rDNA as primary barcode. Amplification efficiencies of 14 (partially) universal primer pairs targeting eight genetic markers were tested across > 1 500 species (1 931 strains or specimens) and the outcomes of almost twenty thousand (19 577) polymerase chain reactions were evaluated. We tested several well-known primer pairs that amplify: i) sections of the nuclear ribosomal RNA gene large subunit (D1–D2 domains of 26/28S); ii) the complete internal transcribed spacer region (ITS1/2); iii) partial β -tubulin II (TUB2); iv) γ-actin (ACT); v) translation elongation factor 1-α (TEF1α); and vi) the second largest subunit of RNA-polymerase II (partial RPB2, section 5–6). Their PCR efficiencies were compared with novel candidate primers corresponding to: i) the fungal-specific translation elongation factor 3 (TEF3); ii) a small ribosomal protein necessary for t-RNA docking; iii) the 60S L10 (L1) RP; iv) DNA topoisomerase I (TOPI); v) phosphoglycerate kinase (PGK); vi) hypothetical protein LNS2; and vii) alternative sections of TEF1α. Results showed that several gene sections are accessible to universal primers (or primers universal for phyla) yielding a single PCR-product. Barcode gap and multi-dimensional scaling analyses revealed that some of the tested candidate markers have universal properties providing adequate infra- and inter-specific variation that make them attractive barcodes for species identification. Among these gene sections, a novel high fidelity primer pair for TEF1α, already widely used as a phylogenetic marker in mycology, has potential as a supplementary DNA barcode with superior resolution to ITS. Both TOPI and PGK show promise for the Ascomycota, while TOPI and LNS2 are attractive for the Pucciniomycotina, for which universal primers for ribosomal subunits often fail.
Fungal Diversity | 2014
Michaela Lackner; G. Sybren de Hoog; Liyue Yang; Leandro F. Moreno; Sarah Abdalla Ahmed; Fritz Andreas; Josef Kaltseis; Markus Nagl; Cornelia Lass-Flörl; Brigitte Risslegger; Günter Rambach; Cornelia Speth; Vincent Robert; Walter Buzina; Sharon C.-A. Chen; Jean-Philippe Bouchara; José F. Cano-Lira; Josep Guarro; Josepa Gené; Fabiola Fernández Silva; Rosa M. T. Haido; Gerhard Haase; Vladimír Havlíček; Dea Garcia-Hermoso; Jacques F. Meis; Ferry Hagen; Martin Kirchmair; Johannes Rainer; Katharina Schwabenbauer; Mirjam Zoderer
As a result of fundamental changes in the International Code of Nomenclature on the use of separate names for sexual and asexual stages of fungi, generic names of many groups should be reconsidered. Members of the ECMM/ISHAM working group on Pseudallescheria/Scedosporium infections herein advocate a novel nomenclature for genera and species in Pseudallescheria, Scedosporium and allied taxa. The generic names Parascedosporium, Lomentospora, Petriella, Petriellopsis, and Scedosporium are proposed for a lineage within Microascaceae with mostly Scedosporium anamorphs producing slimy, annellidic conidia. Considering that Scedosporium has priority over Pseudallescheria and that Scedosporium prolificans is phylogenetically distinct from the other Scedosporium species, some name changes are proposed. Pseudallescheria minutispora and Petriellidium desertorum are renamed as Scedosporium minutisporum and S. desertorum, respectively. Scedosporium prolificans is renamed as Lomentospora prolificans.
BioMed Research International | 2015
Mohamed Afifi; Omar A. Almaghrabi; Naif M. S. Kadasa
The present study investigated the impact of zinc oxide nanoparticles (ZnONPs) on the oxidative status and sperm characteristics in diabetic rat testicular tissue. Forty male albino rats were used in this study; 10 of them served as a control and 30 rats were injected with a single dose (100 mg/kg) of streptozotocin intraperitoneally. They were subdivided into diabetic, diabetic + ZnONPs (10 mg/kg B.W.), and diabetic and cotreated with ZnONPs + insulin groups. The sperm count and motility were assessed. The activity and mRNA expression of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GRD), and Glutathion-S-Transferase (GST) were determined in the testicular tissue. Malondialdehyde (MDA) and reduced glutathione (GSH) levels were estimated in the testicular tissue. Sperm count and motility increased in ZnONPs treated diabetic rats. A significant increase in the activity and mRNA expression of SOD, CAT, GPx, GRD, and GST was shown in ZnONPs treated diabetic rats. MDA significantly decreased, while GSH increased in testicular tissue of ZnONPs treated diabetic rats. It was concluded that ZnONPs either alone or in combination with insulin have the ability to increase the sperm count and motility and protect the testicular tissue against the oxidative stress induced by diabetes in rats.
Pharmacognosy Magazine | 2013
Hassan M. Albishri; Omar A. Almaghrabi; Tarek A. A. Moussa
Background: The growth in the production of biodiesel, which is principally fatty acid methyl esters (FAME), has been phenomenal in the last ten years because of the general desire to cut down on the release of greenhouse gases into the atmosphere, and also as a result of the increasing cost of fossil fuels. Objective: Establish whether there is any relationship between two different species (watermelon and muskmelon) within the same family (Cucurbitaceae) on fatty acid compositions and enumerate the different fatty acids in the two species. Materials and Methods: Extraction of fatty acids from the two species and preparation the extract to gas chromatography/mass spectroscopy analysis to determine the fatty acids compositions qualitatively and quantitatively. Results: The analyzed plants (watermelon and muskmelon) contain five saturated fatty acids; tetrdecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid and octadecanoic acid with different concentrations, while muskmelon contains an extra saturated fatty acid named eicosanoic acid. The watermelon plant contains five unsaturated fatty acids while muskmelon contains three only, the two plants share in two unsaturated fatty acids named 9-hexadecenoic acid and 9-octadecenoic acid, the muskmelon plant contains higher amounts of these two acids (2.04% and 10.12%, respectively) over watermelon plant (0.88% and 0.25%, respectively). Conclusion: The chemical analysis of watermelon and muskmelon revealed that they are similar in saturated fatty acids but differ in unsaturated fatty acids which may be a criterion of differentiation between the two plants.
Fungal Diversity | 2016
Sarah Abdalla Ahmed; Ziauddin Khan; Xue wei Wang; Tarek A. A. Moussa; Hassan S. Al-Zahrani; Omar A. Almaghrabi; Deanna A. Sutton; Suhail Ahmad; Johannes Z. Groenewald; Ana Alastruey-Izquierdo; Anne D. van Diepeningen; S.B.J. Menken; Mohammad Javad Najafzadeh; Pedro W. Crous; Oliver A. Cornely; Axel Hamprecht; Maria J.G.T. Vehreschild; Anupma Jyoti Kindo; G. Sybren de Hoog
Members of the family Chaetomiaceae are ubiquitous ascosporulating fungi commonly, which reside in soil enriched with manure or cellulosic materials. Their role as human pathogens is largely ignored. However, the ability of some species to grow at high temperature enables them to play an important role as opportunistic pathogens. The family contains several genera and species that have never been reported to cause human infection. Hereby, three new species are described; two belong to the genus Subramaniula and one represents a Chaetomium species. Subramaniula asteroides was isolated from various sources including eye and skin infections as well as from the natural environment, and S. obscura was isolated from a toe infection. Chaetomium anamorphosum was isolated from a kidney transplant patient suffering from fungal peritonitis. All species described were previously misidentified as Papulaspora spp. due to the formation of cellular clumps or bulbil-like structures, which are characteristic of Papulaspora. The isolates failed to form sexual fruit bodies and ascospores remained absent, which is an unusual feature for the generally ascosporulating genera Chaetomium and Subramaniula; minute conidia from phialides were sometimes observed.
Medical Mycology | 2015
Jin Yu; Grit Walther; A.D. van Diepeningen; A.H.G. Gerrits van den Ende; Ruoyu Li; Tarek A. A. Moussa; Omar A. Almaghrabi; G.S. de Hoog
Mucormycosis caused, in part, by representatives of the genus Cunninghamella is a severe infection with high mortality in patients with impaired immunity. Several species have been described in the literature as etiologic agents. A DNA barcoding study using ITS rDNA and tef-1α provided concordance of molecular data with conventional characters. The currently accepted Cunninghamella species were well supported in phylogenetic trees of both markers except for C. septata with ITS that clustered in the C. echinulata clade. Sequence variability was distinctly higher for the ITS than for tef-1α. Intraspecific ITS variability of some of the species exceeded that between some closely related species, but the marker remained applicable for species identification. The most variable species for both markers was C. echinulata. Cunninghamella bertholletiae is the main pathogenic species; infections by C. blakesleeana, C. echinulata, and C. elegans are highly exceptional.
Saudi Journal of Biological Sciences | 2016
Tarek A. A. Moussa; Omar A. Almaghrabi
Fatty acid contents of the Peganum harmala plant as a result of hexane extraction were analyzed using GC–MS. The saturated fatty acid composition of the harmal plant was tetradecanoic, pentadecanoic, tridecanoic, hexadecanoic, heptadecanoic and octadecanoic acids, while the saturated fatty acid derivatives were 12-methyl tetradecanoic, 5,9,13-trimethyl tetradecanoic and 2-methyl octadecanoic acids. The most abundant fatty acid was hexadecanoic with concentration 48.13% followed by octadecanoic with concentration 13.80%. There are four unsaturated fatty acids called (E)-9-dodecenoic, (Z)-9-hexadecenoic, (Z,Z)-9,12-octadecadienoic and (Z,Z,Z)-9,12,15-octadecatrienoic. The most abundant unsaturated fatty acid was (Z,Z,Z)-9,12,15-octadecatrienoic with concentration 14.79% followed by (Z,Z)-9,12-octadecadienoic with concentration 10.61%. Also, there are eight non-fatty acid compounds 1-octadecene, 6,10,14-trimethyl-2-pentadecanone, (E)-15-heptadecenal, oxacyclohexadecan-2 one, 1,2,2,6,8-pentamethyl-7-oxabicyclo[4.3.1]dec-8-en-10-one, hexadecane-1,2-diol, n-heneicosane and eicosan-3-ol.
Fungal Biology | 2016
Mariana Machado Fidelis do Nascimento; Laura Selbmann; Somayeh Sharifynia; Abdullah M. S. Al-Hatmi; Hermann Voglmayr; Vania A. Vicente; Shuwen Deng; Alexandra Kargl; Tarek A. A. Moussa; Hassan S. Al-Zahrani; Omar A. Almaghrabi; G. Sybren de Hoog
The family Trichomeriaceae (Chaetothyriales) mainly comprises epiphytic and epilithic organisms. In some species elaborate ascomata are formed, but for the great majority the species no asexual conidium formation is known other than simple fragmentation of the thallus. The present paper re-establishes the genus Arthrocladium with three non-sporulating species. One of these is described for a strain causing a fatal infection in a human patient with a rare genetic immune disorder.
African Journal of Biotechnology | 2012
Ehab M. R. Metwali; Omar A. Almaghrabi
A key factor in the application of in vitro techniques to cauliflower improvement is the development of efficient protocols for regeneration of plants from tissue for use in breeding programs for the selection of the desirable genotypes under biotic and abiotic stress. Experiments were conducted to study the effect of different media components (agar or agar + sucrose or agar + Murashige and Skoog (MS) salts or agar + sucrose + MS) on callus induction and regeneration from five explants types (cotyledon, hypocotyls, shoot apex, primary root and root tip) and also the effects of auxin and cytokinin were carried out using one F 1 hybrid cauliflower cv. Medallion. The results show that cotyledons, mid roots and root apices grown on agar + MS + sugar were the most developed compared with explants on the other media. This medium was the most productive in terms of lateral root number and root length. The presence of 2,4-dichlorophenoxyacetic acid increased callus production compared to 6-benzylamino purine. Within the selected explants, a significant difference was indicated between different explants under different treatments. Liquid culture was more successful at producing viable plantlets than solid culture. Key words: Cauliflower, explants, in vitro , growth regulator, growth characters, solid and liquid culture.
Saudi Journal of Biological Sciences | 2018
Aaser Mohamed Abdelazim; Safaa I. Khater; Haytham A. Ali; Shimaa Shalaby; Mohamed Afifi; Salina Y. Saddick; Ali Alkaladi; Omar A. Almaghrabi
5′ AMP-activated protein kinase (AMPK), insulin receptors and transporters are distorted in diabetes mellitus. In this study, the effect of Panax ginseng was assessed on glucose manipulating enzymes activities and gene expression of AMPK, IRA and GLUT2 in streptozotocin-induced diabetic male rats. Forty male albino rats were randomly divided to four groups 10 rats of each, group I, normal control group (received saline orally); group II, normal rats received 200 mg/kg of Panax ginseng orally; group III, Streptozotocin (STZ) –induced diabetic rats and group IV, STZ-induced diabetic rats received 200 mg/kg of Panax ginseng orally. The duration of experiment was 30 days. Results showed the ability of Panax ginseng to induce a significant decrease in the blood glucose and increase in the serum insulin levels, hepatic glucokinase (GK), and glycogen synthase (GS) activities with a modulation of lipid profile besides high expression levels of AMPK, insulin receptor A (IRA), glucose transporting protein-2 (GLUT-2) in liver of diabetic rats. In conclusion, the obtained results point to the ability of Panax ginseng to improve the glucose metabolism in diabetic models.