Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Omar Valsson is active.

Publication


Featured researches published by Omar Valsson.


Annual Review of Physical Chemistry | 2016

Enhancing Important Fluctuations: Rare Events and Metadynamics from a Conceptual Viewpoint

Omar Valsson; Pratyush Tiwary; Michele Parrinello

Atomistic simulations play a central role in many fields of science. However, their usefulness is often limited by the fact that many systems are characterized by several metastable states separated by high barriers, leading to kinetic bottlenecks. Transitions between metastable states are thus rare events that occur on significantly longer timescales than one can simulate in practice. Numerous enhanced sampling methods have been introduced to alleviate this timescale problem, including methods based on identifying a few crucial order parameters or collective variables and enhancing the sampling of these variables. Metadynamics is one such method that has proven successful in a great variety of fields. Here we review the conceptual and theoretical foundations of metadynamics. As demonstrated, metadynamics is not just a practical tool but can also be considered an important development in the theory of statistical mechanics.


Journal of Chemical Theory and Computation | 2011

Electronic Excitations of Simple Cyanine Dyes: Reconciling Density Functional and Wave Function Methods

Robert Send; Omar Valsson; Claudia Filippi

The simplest cyanine dye series [H2N(CH)nNH2](+) with n = 1, 3, 5, 7, and 9 appears to be a challenge for all theoretical excited-state methods since the experimental spectra are difficult to predict and the observed deviations cannot be easily explained with standard arguments. We compute here the lowest vertical excitation energies of these dyes using a variety of approaches, namely, complete active space second-order perturbation theory (CASPT2), quantum Monte Carlo methods (QMC), coupled cluster linear response up to third approximate order (CC3), and various flavors of time-dependent density functional theory (TDDFT), including the recently proposed perturbative correction scheme (B2PLYP). In our calculations, all parameters such as basis set, active space, and geometry dependence are carefully analyzed. We find that all wave function methods give reasonably close excitation energies, with CASPT2 yielding the lowest values, and that the B2PLYP scheme gives excitations in satisfactory agreement with CC3 and DMC, significantly improving on the generalized gradient and hybrid approximations. Finally, to resolve the remaining discrepancy between predicted excitation energies and experimental absorption spectra, we also investigate the effect of excited-state relaxation. Our results indicate that a direct comparison of the experimental absorption maxima and the theoretical vertical excitations is not possible due to the presence of nonvertical transitions. The apparent agreement of earlier CASPT2 calculations with experiments was an artifact of the choice of active space and the use of an older definition of the zero-order Hamiltonian.


Journal of Chemical Theory and Computation | 2013

Rhodopsin absorption from first principles: Bypassing common pitfalls

Omar Valsson; Pablo Campomanes; Ivano Tavernelli; Ursula Rothlisberger; Claudia Filippi

Bovine rhodopsin is the most extensively studied retinal protein and is considered the prototype of this important class of photosensitive biosystems involved in the process of vision. Many theoretical investigations have attempted to elucidate the role of the protein matrix in modulating the absorption of retinal chromophore in rhodopsin, but, while generally agreeing in predicting the correct location of the absorption maximum, they often reached contradicting conclusions on how the environment tunes the spectrum. To address this controversial issue, we combine here a thorough structural and dynamical characterization of rhodopsin with a careful validation of its excited-state properties via the use of a wide range of state-of-the-art quantum chemical approaches including various flavors of time-dependent density functional theory (TDDFT), different multireference perturbative schemes (CASPT2 and NEVPT2), and quantum Monte Carlo (QMC) methods. Through extensive quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulations, we obtain a comprehensive structural description of the chromophore-protein system and sample a wide range of thermally accessible configurations. We show that, in order to obtain reliable excitation properties, it is crucial to employ a sufficient number of representative configurations of the system. In fact, the common use of a single, ad hoc structure can easily lead to an incorrect model and an agreement with experimental absorption spectra due to cancelation of errors. Finally, we show that, to properly account for polarization effects on the chromophore and to quench the large blue-shift induced by the counterion on the excitation energies, it is necessary to adopt an enhanced description of the protein environment as given by a large quantum region including as many as 250 atoms.


Journal of Chemical Theory and Computation | 2013

Sate-specific embedding potentials for excitation-energy calculations

Csaba Daday; Carolin König; Omar Valsson; Johannes Neugebauer; Claudia Filippi

Embedding potentials are frequently used to describe the effect of an environment on the electronic structure of molecules in larger systems, including their excited states. If such excitations are accompanied by significant rearrangements in the electron density of the embedded molecule, large differential polarization effects may take place, which in turn can require state-specific embedding potentials for an accurate theoretical description. We outline here how to extend wave function in density functional theory (WF/DFT) methods to compute the excitation energies of a molecule in a responsive environment through the use of state-specific density-based embedding potentials constructed within a modified subsystem DFT approach. We evaluate the general expression of the ground- and excited-state energy difference of the total system both with the use of state-independent and state-dependent embedding potentials and propose some practical recipes to construct the approximate excited-state DFT density of the active part used to polarize the environment. We illustrate these concepts with the state-independent and state-dependent WF/DFT computation of the excitation energies of p-nitroaniline, acrolein, methylenecyclopropene, and p-nitrophenolate in various solvents.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Enhanced, targeted sampling of high-dimensional free-energy landscapes using variationally enhanced sampling, with an application to chignolin

Patrick Shaffer; Omar Valsson; Michele Parrinello

Significance The problem of sampling complex systems characterized by metastable states separated by kinetic bottlenecks is a universal one that has received much attention. Popular strategies involve applying a bias to a small number of collective variables. This strategy fails when the choice of collective variable is not clear or when the system’s free energy cannot be projected meaningfully on a low-dimensional manifold. We use a variational principle that allows one to construct approximate but effective multidimensional biases. We show in a practical case that the method is much more efficient than alternative methods. We expect this method to be useful for a wide variety of sampling problems in chemistry, biology, and materials science. The capabilities of molecular simulations have been greatly extended by a number of widely used enhanced sampling methods that facilitate escaping from metastable states and crossing large barriers. Despite these developments there are still many problems which remain out of reach for these methods which has led to a vigorous effort in this area. One of the most important problems that remains unsolved is sampling high-dimensional free-energy landscapes and systems that are not easily described by a small number of collective variables. In this work we demonstrate a new way to compute free-energy landscapes of high dimensionality based on the previously introduced variationally enhanced sampling, and we apply it to the miniprotein chignolin.


Journal of Physical Chemistry Letters | 2012

Gas-Phase Retinal Spectroscopy: Temperature Effects Are But a Mirage.

Omar Valsson; Claudia Filippi

We employ state-of-the-art first-principle approaches to investigate whether temperature effects are responsible for the unusually broad and flat spectrum of protonated Schiff base retinal observed in photodissociation spectroscopy, as has recently been proposed. We first carefully calibrate how to construct a realistic geometrical model of retinal and show that the exchange-correlation M06-2X functional yields an accurate description while the commonly used complete active space self-consistent field method (CASSCF) is not adequate. Using modern multiconfigurational perturbative methods (NEVPT2) to compute the excitations, we then demonstrate that conformations with different orientations of the β-ionone ring are characterized by similar excitations. Moreover, other degrees of freedom identified as active in room-temperature molecular dynamics simulations do not yield the shift required to explain the anomalous spectral shape. Our findings indicate that photodissociation experiments are not representative of the optical spectrum of retinal in the gas phase and call for further experimental characterization of the dissociation spectra.


Journal of Chemical Theory and Computation | 2015

Well-Tempered Variational Approach to Enhanced Sampling

Omar Valsson; Michele Parrinello

We propose a simple yet effective iterative scheme that allows us to employ the well-tempered distribution as a target distribution for the collective variables in our recently introduced variational approach to enhanced sampling and free energy calculations [ Valsson and Parrinello Phys. Rev. Lett. 2014 , 113 , 090601 ]. The performance of the scheme is evaluated for the three-dimensional free energy surface of alanine tetrapeptide where the convergence can be rather poor when employing the uniform target distribution. Using the well-tempered target distribution on the other hand results in a significant improvement in convergence. The results observed in this paper indicate that the well-tempered distribution is in most cases the preferred and recommended choice for the target distribution in the variational approach.


Physical Review Letters | 2015

Variationally Optimized Free-Energy Flooding for Rate Calculation.

James McCarty; Omar Valsson; Pratyush Tiwary; Michele Parrinello

We propose a new method to obtain kinetic properties of infrequent events from molecular dynamics simulation. The procedure employs a recently introduced variational approach [Valsson and Parrinello, Phys. Rev. Lett. 113, 090601 (2014)] to construct a bias potential as a function of several collective variables that is designed to flood the associated free energy surface up to a predefined level. The resulting bias potential effectively accelerates transitions between metastable free energy minima while ensuring bias-free transition states, thus allowing accurate kinetic rates to be obtained. We test the method on a few illustrative systems for which we obtain an order of magnitude improvement in efficiency relative to previous approaches and several orders of magnitude relative to unbiased molecular dynamics. We expect an even larger improvement in more complex systems. This and the ability of the variational approach to deal efficiently with a large number of collective variables will greatly enhance the scope of these calculations. This work is a vindication of the potential that the variational principle has if applied in innovative ways.


Physical Review Letters | 2017

Enhancing Entropy and Enthalpy Fluctuations to Drive Crystallization in Atomistic Simulations

Pablo M. Piaggi; Omar Valsson; Michele Parrinello

Crystallization is a process of great practical relevance in which rare but crucial fluctuations lead to the formation of a solid phase starting from the liquid. As in all first order first transitions, there is an interplay between enthalpy and entropy. Based on this idea, in order to drive crystallization in molecular simulations, we introduce two collective variables, one enthalpic and the other entropic. Defined in this way, these collective variables do not prejudge the structure into which the system is going to crystallize. We show the usefulness of this approach by studying the cases of sodium and aluminum that crystallize in the bcc and fcc crystalline structures, respectively. Using these two generic collective variables, we perform variationally enhanced sampling and well tempered metadynamics simulations and find that the systems transform spontaneously and reversibly between the liquid and the solid phases.


Journal of Chemical Physics | 2015

Regarding the use and misuse of retinal protonated Schiff base photochemistry as a test case for time-dependent density-functional theory

Omar Valsson; Claudia Filippi; Mark E. Casida

The excited-state relaxation of retinal protonated Schiff bases (PSBs) is an important test case for biological applications of time-dependent (TD) density-functional theory (DFT). While well-known shortcomings of approximate TD-DFT might seem discouraging for application to PSB relaxation, progress continues to be made in the development of new functionals and of criteria allowing problematic excitations to be identified within the framework of TD-DFT itself. Furthermore, experimental and theoretical ab initio advances have recently lead to a revised understanding of retinal PSB photochemistry, calling for a reappraisal of the performance of TD-DFT in describing this prototypical photoactive system. Here, we re-investigate the performance of functionals in (TD-)DFT calculations in light of these new benchmark results, which we extend to larger PSB models. We focus on the ability of the functionals to describe primarily the early skeletal relaxation of the chromophore and investigate how far along the out-of-plane pathways these functionals are able to describe the subsequent rotation around formal single and double bonds. Conventional global hybrid and range-separated hybrid functionals are investigated as the presence of Hartree-Fock exchange reduces problems with charge-transfer excitations as determined by the Peach-Benfield-Helgaker-Tozer Λ criterion and by comparison with multi-reference perturbation theory results. While we confirm that most functionals cannot render the complex photobehavior of the retinal PSB, do we also observe that LC-BLYP gives the best description of the initial part of the photoreaction.

Collaboration


Dive into the Omar Valsson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yong Wang

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge