Omid R Faridani
Karolinska Institutet
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Omid R Faridani.
Nature Biotechnology | 2012
Daniel Ramsköld; Shujun Luo; Yu-Chieh Wang; Robin Li; Qiaolin Deng; Omid R Faridani; Gregory A. Daniels; Irina Khrebtukova; Jeanne F. Loring; Louise C. Laurent; Gary P. Schroth; Rickard Sandberg
Genome-wide transcriptome analyses are routinely used to monitor tissue-, disease- and cell type–specific gene expression, but it has been technically challenging to generate expression profiles from single cells. Here we describe a robust mRNA-Seq protocol (Smart-Seq) that is applicable down to single cell levels. Compared with existing methods, Smart-Seq has improved read coverage across transcripts, which enhances detailed analyses of alternative transcript isoforms and identification of single-nucleotide polymorphisms. We determined the sensitivity and quantitative accuracy of Smart-Seq for single-cell transcriptomics by evaluating it on total RNA dilution series. We found that although gene expression estimates from single cells have increased noise, hundreds of differentially expressed genes could be identified using few cells per cell type. Applying Smart-Seq to circulating tumor cells from melanomas, we identified distinct gene expression patterns, including candidate biomarkers for melanoma circulating tumor cells. Our protocol will be useful for addressing fundamental biological problems requiring genome-wide transcriptome profiling in rare cells.
Nature Protocols | 2014
Simone Picelli; Omid R Faridani; Åsa K Björklund; Gösta Winberg; Sven Sagasser; Rickard Sandberg
Emerging methods for the accurate quantification of gene expression in individual cells hold promise for revealing the extent, function and origins of cell-to-cell variability. Different high-throughput methods for single-cell RNA-seq have been introduced that vary in coverage, sensitivity and multiplexing ability. We recently introduced Smart-seq for transcriptome analysis from single cells, and we subsequently optimized the method for improved sensitivity, accuracy and full-length coverage across transcripts. Here we present a detailed protocol for Smart-seq2 that allows the generation of full-length cDNA and sequencing libraries by using standard reagents. The entire protocol takes ∼2 d from cell picking to having a final library ready for sequencing; sequencing will require an additional 1–3 d depending on the strategy and sequencer. The current limitations are the lack of strand specificity and the inability to detect nonpolyadenylated (polyA−) RNA.
Nature Methods | 2013
Simone Picelli; Åsa K Björklund; Omid R Faridani; Sven Sagasser; Gösta Winberg; Rickard Sandberg
Single-cell gene expression analyses hold promise for characterizing cellular heterogeneity, but current methods compromise on either the coverage, the sensitivity or the throughput. Here, we introduce Smart-seq2 with improved reverse transcription, template switching and preamplification to increase both yield and length of cDNA libraries generated from individual cells. Smart-seq2 transcriptome libraries have improved detection, coverage, bias and accuracy compared to Smart-seq libraries and are generated with off-the-shelf reagents at lower cost.
Nature Cell Biology | 2010
Stefano Gastaldello; Sebastian Hildebrand; Omid R Faridani; Simone Callegari; Mia Palmkvist; Claudia Di Guglielmo; Maria G. Masucci
The large tegument proteins of herpesviruses encode conserved cysteine proteases of unknown function. Here we show that BPLF1, the Epstein–Barr-virus-encoded member of this protease family, is a deneddylase that regulates virus production by modulating the activity of cullin-RING ligases (CRLs). BPLF1 hydrolyses NEDD8 conjugates in vitro, acts as a deneddylase in vivo, binds to cullins and stabilizes CRL substrates. Expression of BPLF1 alone or in the context of the productive virus cycle induces accumulation of the licensing factor CDT1 and deregulates S-phase DNA synthesis. Inhibition of BPLF1 during the productive virus cycle prevents cellular DNA re-replication and inhibits virus replication. Viral DNA synthesis is restored by overexpression of CDT1. Homologues encoded by other herpesviruses share the deneddylase activity. Thus, these enzymes are likely to have a key function in the virus life cycle by inducing a replication-permissive S-phase-like cellular environment.
Nucleic Acids Research | 2006
Omid R Faridani; Abbas Nikravesh; Deo Prakash Pandey; Kenn Gerdes; Liam Good
Short regulatory RNAs are widespread in bacteria, and many function through antisense recognition of mRNA. Among the best studied antisense transcripts are RNA antitoxins that repress toxin mRNA translation. The hok/sok locus of plasmid R1 from Escherichia coli is an established model for RNA antitoxin action. Base-pairing between hok mRNA and Sok-antisense-RNA increases plasmid maintenance through post-segregational-killing of plasmid-free progeny cells. To test the model and the idea that sequestration of Sok-RNA activity could provide a novel antimicrobial strategy, we designed anti Sok peptide nucleic acid (PNA) oligomers that, according to the model, would act as competitive inhibitors of hok mRNA::Sok-RNA interactions. In hok/sok-carrying cells, anti Sok PNAs were more bactericidal than rifampicin. Also, anti Sok PNAs induced ghost cell morphology and an accumulation of mature hok mRNA, consistent with cell killing through synthesis of Hok protein. The results support the sense/antisense model for hok mRNA repression by Sok-RNA and demonstrate that antisense agents can be used to out-compete RNA::RNA interactions in bacteria. Finally, BLAST analyses of ≈200 prokaryotic genomes revealed that many enteric bacteria have multiple hok/sok homologous and analogous RNA-regulated toxin–antitoxin loci. Therefore, it is possible to activate suicide in bacteria by targeting antitoxins.
Nature Biotechnology | 2016
Omid R Faridani; Ilgar Abdullayev; Michael Hagemann-Jensen; John Paul Schell; Fredrik Lanner; Rickard Sandberg
Little is known about the heterogeneity of small-RNA expression as small-RNA profiling has so far required large numbers of cells. Here we present a single-cell method for small-RNA sequencing and apply it to naive and primed human embryonic stem cells and cancer cells. Analysis of microRNAs and fragments of tRNAs and small nucleolar RNAs (snoRNAs) reveals the potential of microRNAs as markers for different cell types and states.
Nucleic Acids Research | 2011
Ehsan Arefian; Jafar Kiani; Masoud Soleimani; S. Ali M. Shariati; Seyed Hamid Aghaee-Bakhtiari; Amir Atashi; Yousof Gheisari; Naser Ahmadbeigi; Ali M. Banaei-Moghaddam; Mahmood Naderi; Nabiolah Namvarasl; Liam Good; Omid R Faridani
The expression pattern and regulatory functions of microRNAs (miRNAs) are intensively investigated in various tissues, cell types and disorders. Differential miRNA expression signatures have been revealed in healthy and unhealthy tissues using high-throughput profiling methods. For further analyses of miRNA signatures in biological samples, we describe here a simple and efficient method to detect multiple miRNAs simultaneously in total RNA. The size-coded ligation-mediated polymerase chain reaction (SL-PCR) method is based on size-coded DNA probe hybridization in solution, followed-by ligation, PCR amplification and gel fractionation. The new method shows quantitative and specific detection of miRNAs. We profiled miRNAs of the let-7 family in a number of organisms, tissues and cell types and the results correspond with their incidence in the genome and reported expression levels. Finally, SL-PCR detected let-7 expression changes in human embryonic stem cells as they differentiate to neuron and also in young and aged mice brain and bone marrow. We conclude that the method can efficiently reveal miRNA signatures in a range of biological samples.
FEBS Journal | 2014
Simone Callegari; Stefano Gastaldello; Omid R Faridani; Maria G. Masucci
Post‐translational modification by the small ubiquitin‐like modifier (SUMO) regulates the cellular response to different types of stress and plays a pivotal role in the control of oncogenic viral infections. Here we investigated the capacity of microRNAs (miRNAs) encoded by Epstein–Barr virus to interfere with the SUMO signaling network. Using a computational strategy that scores different properties of miRNA–mRNA target pairs, we identified a minimal set of 575 members of the SUMO interactome that may be targeted by one or more Epstein–Barr virus miRNAs. A significant proportion of the candidates cluster in a functional network that controls chromatin organization, stress, DNA damage and immune responses, apoptosis and transforming growth factor beta signaling. Multiple components of the transforming growth factor beta signaling pathway were inhibited upon upregulation of the BamHI‐H rightward open reading frame 1 (BHRF1) encoded miRNAs in cells transduced with recombinant lentiviruses or entering the productive virus cycle. These findings point to the capacity of viral miRNAs to interfere with SUMO‐regulated cellular functions that control key aspects of viral replication and pathogenesis.
Nucleic Acids Research | 2008
Omid R Faridani; Gerald M. McInerney; Katarina Gradin; Liam Good
Double-stranded RNA (dsRNA) is formed in cells as intra- and intermolecular RNA interactions and is involved in a range of biological processes including RNA metabolism, RNA interference and translation control mediated by natural antisense RNA and microRNA. Despite this breadth of activities, few molecular tools are available to analyse dsRNA as native hybrids. We describe a two-step ligation method for enzymatic joining of dsRNA adaptors to any dsRNA molecule in its duplex form without a need for prior sequence or termini information. The method is specific for dsRNA and can ligate various adaptors to label, map or amplify dsRNA sequences. When combined with reverse transcription–polymerase chain reaction, the method is sensitive and can detect low nanomolar concentrations of dsRNA in total RNA. As examples, we mapped dsRNA/single-stranded RNA junctions within Escherichia coli hok mRNA and the human immunodeficiency virus TAR element using RNA from bacteria and mammalian cells.
Nature Biotechnology | 2015
Omid R Faridani; Rickard Sandberg
A combination of single-cell transcriptomics with in situ hybridization information enables single cells to be positioned within their tissue.