Omkar Byadgi
National Pingtung University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Omkar Byadgi.
Clinical & Developmental Immunology | 2014
Omkar Byadgi; Dinda Puteri; Jai-Wei Lee; Tsung-Chou Chang; Yan-Horn Lee; Chun-Yen Chu; Ta-Chih Cheng
Cytosine-guanine oligodeoxynucleotide (CpG ODN) motifs of bacterial DNA are recognized through toll-like receptor 9 (TLR9) and are potent activators of innate immunity. However, the interaction between TLR9 and CpG ODN in aquatic species has not been well characterized. Hence, cobia TLR9 isoform B (RCTLR9B) was cloned and its expression and induction in intestine were investigated. RCTLR9B cDNA consists of 3113bp encoding 1009 amino acids containing three regions, leucine rich repeats, transmembrane domain, and toll/interleukin-1 receptor (TIR) domain. Intraperitoneal injection of CpG ODN 2395 upregulated RCTLR9 A and B and MyD88 and also induced the expressions of Mx, chemokine CC, and interleukin IL-1β. Cobia intraperitoneally injected with CpG ODN 1668 and 2395 had increased survival rates after challenge with Photobacterium damselae subsp. piscicida. In addition, formulation of CpG ODN with formalin-killed bacteria (FKB) and aluminum hydroxide gel significantly increased expressions of RCTLR9 A (50 folds) and B (30 folds) isoforms at 10 dpi (CpG ODN 1668) and MyD88 (21 folds) at 6 dpv (CpG ODN 2395). Subsequently, IL-1β increased at 6 dpv in 1668 group. No histopathological damage and inflammatory responses were observed in the injected cobia. Altogether, these results facilitate CpG ODNs as an adjuvant to increase bacterial disease resistance and efficacy of vaccines in cobia.
International Journal of Molecular Sciences | 2016
Omkar Byadgi; Chi-Wen Chen; Pei-Chyi Wang; Ming-An Tsai; Shih-Chu Chen
Largemouth bass (Micropterus salmoides) are common hosts of an epizootic bacterial infection by Nocardia seriolae. We conducted transcriptome profiling of M. salmoides to understand the host immune response to N. seriolae infection, using the Illumina sequencing platform. De novo assembly of paired-end reads yielded 47,881 unigenes, the total length, average length, N50, and GC content of which were 49,734,288, 1038, 1983 bp, and 45.94%, respectively. Annotation was performed by comparison against non-redundant protein sequence (NR), non-redundant nucleotide (NT), Swiss-Prot, Clusters of Orthologous Groups (COG), Kyoto Encyclopaedia of Genes and Genomes (KEGG), Gene Ontology (GO), and Interpro databases, yielding 28,964 (NR: 60.49%), 36,686 (NT: 76.62%), 24,830 (Swissprot: 51.86%), 8913 (COG: 18.61%), 20,329 (KEGG: 42.46%), 835 (GO: 1.74%), and 22,194 (Interpro: 46.35%) unigenes. Additionally, 8913 unigenes were classified into 25 Clusters of Orthologous Groups (KOGs) categories, and 20,329 unigenes were assigned to 244 specific signalling pathways. RNA-Seq by Expectation Maximization (RSEM) and PossionDis were used to determine significantly differentially expressed genes (False Discovery Rate (FDR) < 0.05) and we found that 1384 were upregulated genes and 1542 were downregulated genes, and further confirmed their regulations using reverse transcription quantitative PCR (RT-qPCR). Altogether, these results provide information on immune mechanisms induced during bacterial infection in largemouth bass, which may facilitate the prevention of nocardiosis.
Fish & Shellfish Immunology | 2017
Shun Maekawa; Omkar Byadgi; Yao-Chung Chen; Takashi Aoki; Haruko Takeyama; Terutoyo Yoshida; Jun-ichi Hikima; Masahiro Sakai; Pei Chi Wang; Shih Chu Chen
ABSTRACT Vibrio harveyi is a gram‐negative bacterium reported as found in many aquaculture species. To increase knowledge of the immune response against V. harveyi, in this study we performed transcriptome analysis of head kidney and spleen in orange‐spotted grouper (Epinephelus coioides) at 1 and 2 days post‐infection (dpi), using the Illumina sequencing platform. After de novo assembly, a total of 79,128 unigenes was detected with an N50 of 2511 bp. After alignments with sequences recorded in the major databases (NT, NR, Swiss‐Prot COG, KEGG, Interpro and GO), based on sequence similarity, 61,208 (77.4%) of the unigene total could be annotated using at least one database. Comparison of gene expression levels between V. harveyi and a control group at each time point revealed differentially expressed genes (DEGs) (P < 0.05): a total of 7918 (5536 upregulated and 2282 downregulated genes) from head kidney at 1 day post infection (dpi), 4260 (1444 upregulated and 2816 downregulated genes) from head kidney at 2 dpi, 7887 (4892 upregulated and 2995 downregulated genes) from spleen at 1 dpi, and 8952 (7388 upregulated and 1564 downregulated genes) from spleen at 2 dpi. The DEGs were mainly annotated into signal transduction and immune system categories, based on the KEGG database. The DEGs were enriched in immune‐related pathway functions, NOD‐like receptor signaling pathways, Toll‐like receptor signaling pathways, NF‐&kgr;B signaling pathways, and Jak‐STAT signaling pathways. Additionally, we selected several DEGs and validated their expression level by RT‐qPCR. The data generated in this study may provide a valuable resource for further immune response research and offer improved strategies against V. harveyi infection in teleost fishes. HighlightsTranscriptome analysis of head kidney and spleen at 1 and 2 days post‐infection of Vibrio harveyi was performed in orange‐spotted grouper (Epinephelus coioides).A total of 79,128 unigenes were obtained after de novo assembly.A number of differentially expressed genes were annotated in immune system.The increase of RANKL, IL‐l&bgr;, INF‐&ggr; genes and these target genes expression indicated the activation of immune response against Vibrio harveyi infection.
International Journal of Molecular Sciences | 2016
Ping-Yueh Ho; Omkar Byadgi; Pei-Chyi Wang; Ming-An Tsai; Li-Ling Liaw; Shih-Chu Chen
In the present study, IL-1β cDNA was identified and analyzed from largemouth bass (Micropterus salmoides). Full length IL-1β mRNA was obtained using Rapid Amplification of cDNA Ends (RACE), which contains 78 bp 3′-UTR, a 455 bp 5′-UTR, and an open reading frame (ORF) of 702 bp coding for 233 amino acid residues. The molecular weight and theoretical isoelectric point of largemouth bass IL-1β protein was predicted to be 26.7 kDa and 6.08 respectively. A largemouth bass IL-1β phylogenetic analysis showed a close relation to the IL-1βs of striped trumpeter (Latris lineata), Chinese perch (Siniperca chuatsi), and Japanese sea bass (Lateolabrax japonicus). Peptidoglycan upregulated IL-1β in the spleen and head kidney, while lipopolysaccharide upregulated detectable levels of IL-1β in the spleen only. Largemouth bass, challenged with Nocardia seriolae (1.0 × 106 cfu/mL), showed a significant increase in IL-1β at 3 and 5 days post infection (dpi) in the spleen, while in the head kidney significant expression was found at 2 and 3 dpi, peaking at 3 dpi. Furthermore, tumor necrosis factor α (TNF-α) showed significantly higher expression in the spleen at 3 and 5 dpi, and in the head kidney at 1 and 3 dpi, with expression decreasing at 5 dpi in both tissues.
Fish & Shellfish Immunology | 2019
Omkar Byadgi; Paola Beraldo; Donatella Volpatti; Michela Massimo; Chiara Bulfon; Marco Galeotti
In the Mediterranean area, amyloodiniosis represents a major hindrance for marine aquaculture, causing high mortalities in lagoon-type based rearing sites during warm seasons. Amyloodinium ocellatum (AO) is the most common and important dinoflagellate parasitizing fish, and is one of the few fish parasites that can infest several fish species living within its ecological range. In the present study, A. ocellatum was recorded and collected from infected European sea bass (Dicentrarchus labrax) during a summer 2017 outbreak in north east Italy. Histological observation of infected ESB gill samples emphasized the presence of round or pear-shaped trophonts anchored to the oro-pharingeal cavity. Molecular analysis for small subunit (SSU) rDNA of A. ocellatum from gill genomic DNA amplified consistently and yielded 248 bp specific amplicon of A. ocellatum, that was also confirmed using sequencing and NCBI Blast analysis. Histological sections of ESB gill samples were addressed to immunohistochemical procedure for the labelling of ESB igm, inos, tlr2, tlr4, pcna and cytokeratin. Infected gills resulted positive for igm, inos, pcna and cytokeratin but negative to tlr-2 and tlr-4. Furthermore, ESB immune related gene response (innate immunity, adaptive immunity, and stress) in the course of A. ocellatum infection using quantitative polymerase chain reaction (qpcr) for infected gills and head kidney was analysed. Among the twenty three immune related gene molecules tested, cc1, il-8, il-10, hep, cox-2, cla, cat, casp9, and igt were significantly expressed in diseased fish. Altogether, these data on parasite identification and expression of host immune-related genes will allow for a better understanding of immune response in European sea bass against A. ocellatum and could promote the development of effective control measures.
International Journal of Molecular Sciences | 2018
Omkar Byadgi; Yao-Chung Chen; Shun Maekawa; Pei-Chyi Wang; Shih-Chu Chen
In order to understand the molecular basis underlying the host immune response of koi carp (Cyprinus carpio), Illumina HiSeqTM 2000 is used to analyze the muscle and spleen transcriptome of koi carp infected with Aeromonas sobria (A. sobria). De novo assembly of paired-end reads yielded 69,480 unigenes, of which the total length, average length, N50, and GC content are 70,120,028 bp, 1037 bp, 1793 bp, and 45.77%, respectively. Annotation is performed by comparison against various databases, yielding 42,229 (non-redundant protein sequence (NR): 60.78%), 59,255 (non-redundant nucleotide (NT): 85.28%), 35,900 (Swiss-Prot: 51.67%), 11,772 (clusters of orthologous groups (COG): 16.94%), 33,057 (Kyoto Encyclopedia of Genes and Genomes (KEGG): 47.58%), 18,764 (Gene Ontology (GO): 27.01%), and 32,085 (Interpro: 46.18%) unigenes. Comparative analysis of the expression profiles between bacterial challenge fish and control fish identifies 7749 differentially expressed genes (DEGs) from the muscle and 7846 DEGs from the spleen. These DEGs are further categorized with KEGG. Enrichment analysis of the DEGs and unigenes reveals major immune-related functions, including up-regulation of genes related with Toll-like receptor signaling, complement and coagulation cascades, and antigen processing and presentation. The results from RNA-Seq data are also validated and confirmed the consistency of the expression levels of seven immune-related genes after 24 h post infection with qPCR. Microsatellites (11,534), including di-to hexa nucleotide repeat motifs, are also identified. Altogether, this work provides valuable insights into the underlying immune mechanisms elicited during bacterial infection in koi carp that may aid in the future development of disease control measures in protection against A. sobria.
Renewable & Sustainable Energy Reviews | 2014
Naichia Yeh; Pulin Yeh; Naichien Shih; Omkar Byadgi; Ta Chih Cheng
Fish & Shellfish Immunology | 2014
Omkar Byadgi; Dinda Puteri; Yan-Horn Lee; Jai-Wei Lee; Ta-Chih Cheng
Fish & Shellfish Immunology | 2016
Omkar Byadgi; Yao-Chung Chen; Andrew C. Barnes; Ming-An Tsai; Pei-Chyi Wang; Shih-Chu Chen
Aquaculture | 2017
Thuy Thi Thu Nguyen; Hai Trong Nguyen; Ming-An Tsai; Omkar Byadgi; Pei-Chyi Wang; Terutoyo Yoshida; Shih-Chu Chen