Ondřej Mašek
University of Edinburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ondřej Mašek.
Gcb Bioenergy | 2013
Kyle Crombie; Ondřej Mašek; Saran Sohi; Peter Brownsort; Andrew Cross
Biochar is the porous, carbonaceous material produced by thermochemical treatment of organic materials in an oxygen‐limited environment. In general, most biochar can be considered resistant to chemical and biological decomposition, and therefore suitable for carbon (C) sequestration. However, to assess the C sequestration potential of different types of biochar, a reliable determination of their stability is needed. Several techniques for assessing biochar stability have been proposed, e.g. proximate analysis, oxygen (O): C ratio and hydrogen (H): C ratio; however, none of them are yet widely recognized nor validated for this purpose. Biochar produced from three feedstocks (Pine, Rice husk and Wheat straw) at four temperatures (350, 450, 550 and 650 °C) and two heating rates (5 and 100 °C min−1) was analysed using three methods of stability determination: proximate analysis, ultimate analysis and a new analytical tool developed at the UK Biochar Research Centre known as the Edinburgh accelerated ageing tool (Edinburgh stability tool). As expected, increased pyrolysis temperatures resulted in higher fractions of stable C and total C due to an increased release of volatiles. Data from the Edinburgh stability tool were compared with those obtained by the other methods, i.e. fixed C, volatile matter, O : C and H : C ratios, to investigate potential relationships between them. Results of this comparison showed that there was a strong correlation (R > 0.79) between the stable C determined by the Edinburgh stability tool and fixed C, volatile matter and O : C, however, H : C showed a weaker correlation (R = 0.65). An understanding of the influence of feedstock and production conditions on the long‐term stability of biochar is pivotal for its function as a C mitigation measure, as production and use of unstable biochar would result in a relatively rapid return of C into the atmosphere, thus potentially intensifying climate change rather than alleviating it.
Gcb Bioenergy | 2015
Kyle Crombie; Ondřej Mašek
This study aimed to investigate the extent to which it is possible to marry the two seemingly opposing concepts of heat and/or power production from biomass with carbon sequestration in the form of biochar. To do this, we investigated the effects of feedstock, highest heating temperature (HTT), residence time at HTT and carrier gas flow rate on the distribution of pyrolysis co‐products and their energy content, as well as the carbon sequestration potential of biochar. Biochar was produced from wood pellets (WP) and straw pellets (SP) at two temperatures (350 and 650 °C), with three residence times (10, 20 and 40 min) and three carrier gas flow rates (0, 0.33 and 0.66 l min−1). The energy balance of the system was determined experimentally by quantifying the energy contained within pyrolysis co‐products. Biochar was also analysed for physicochemical and soil functional properties, namely environmentally stable‐C and labile‐C content. Residence time showed no considerable effect on any of the measured properties. Increased HTT resulted in higher concentrations of fixed C, total C and stable‐C in biochar, as well as higher heating value (HHV) due to the increased release of volatile compounds. Increased carrier gas flow rate resulted in decreased biochar yields and reduced biochar stable‐C and labile‐C content. Pyrolysis at 650 °C showed an increased stable‐C yield as well as a decreased proportion of energy stored in the biochar fraction but increased stored energy in the liquid and gas co‐products. Carrier gas flow rate was also seen to be influential in determining the proportion of energy stored in the gas phase. Understanding the influence of production conditions on long term biochar stability in addition to the energy content of the co‐products obtained from pyrolysis is critical for the development of specifically engineered biochar, be it for agricultural use, carbon storage, energy generation or combinations of the three.
Gcb Bioenergy | 2015
Kyle Crombie; Ondřej Mašek; Andrew Cross; Saran Sohi
The characterization of biochar has been predominantly focused around determining physicochemical properties including chemical composition, porosity and volatile content. To date, little systematic research has been done into assessing the properties of biochar that directly relate to its function in soil and how production conditions could impact these. The aim of this study was to evaluate how pyrolysis conditions can influence biochars potential for soil enhancing benefits by addressing key soil constraints, and identify potential synergies and restrictions. To do this, biochar produced from pine wood chips (PC), wheat straw (WS) and wheat straw pellets (WSP) at four highest treatment temperatures (HTT) (350, 450, 550 and 650 °C) and two heating rates (5 and 100 °C min−1) were analysed for pH, extractable nutrients, cation exchange capacity (CEC), stable‐C content and labile‐C content. Highest treatment temperature and feedstock selection played an important role in the development of biochar functional properties while overall heating rate (in the range investigated) was found to have no significant effect on pH, stable‐C or labile‐C concentrations. Increasing the HTT reduced biochar yield and labile‐C content while increasing the yield of stable‐C present within biochar. Biochar produced at higher HTT also demonstrated a higher degree of alkalinity improving biochars ability to increase soil pH. The concentration of extractable nutrients was mainly affected by feedstock selection while the biochar CEC was influenced by HTT, generally reaching its highest values between 450–550 °C. Biochar produced at ≥550 °C showed high combined values for C stability, pH and CEC while lower HTTs favoured nutrient availability. Therefore attempts to maximize biochars C sequestration potential could reduce the availability of biochar nutrients. Developing our understanding of how feedstock selection and processing conditions influence key biochar properties can be used to refine the pyrolysis process and design of ‘bespoke biochar’ engineered to deliver specific environmental functions.
Bioresource Technology | 2014
Kyle Crombie; Ondřej Mašek
This work aimed to investigate the impact of highest treatment temperature (HTT), heating rate, carrier gas flow rate and feedstock on the composition and energy content of pyrolysis gas to assess whether a self-sustained system could be achieved through the combustion of the gas fraction alone, leaving other co-products available for alternative high-value uses. Calculations based on gas composition showed that the pyrolysis process could be sustained by the energy contained within the pyrolysis gases alone. The lower energy limit (6% biomass higher heating value (HHV)) was surpassed by pyrolysis at ⩾450°C while only a HTT of 650°C consistently met the upper energy limit (15% biomass HHV). These findings fill an important gap in literature related to the energy balance of the pyrolysis systems for biochar production, and show that, at least from an energy balance perspective; self-sustained slow pyrolysis for co-production of biochar and liquid products is feasible.
Bioresource Technology | 2017
Xiaoyun Xu; Yinghao Zhao; Jingke Sima; Ling Zhao; Ondřej Mašek; Xinde Cao
Biochar typically consists of both carbon and mineral fractions, and the carbon fraction has been generally considered to determine its properties and applications. Recently, an increasing body of research has demonstrated that mineral components inherent in biochar, such as alkali or alkaline earth metals in the form of carbonates, phosphates, or oxides, could also influence the properties and thus the applications. The review articles published thus far have mainly focused on multiple environmental and agronomic applications of biochar, including carbon sequestration, soil improvement, environmental remediation, etc. This review aims to highlight the indispensable role of the mineral fraction of biochar in these different applications, especially in environmental applications. Specifically, it provides a critical review of current research findings related to the mineral composition of biochar and the effect of the mineral fraction on the physicochemical properties, contaminant sorption, carbon retention and stability, and nutrient bioavailability of biochar. Furthermore, the role of minerals in the emerging applications of biochar, as a precursor for fuel cells, supercapacitors, and photoactive components, is also summarized. Overall, inherent minerals should be fully considered while determining the most appropriate application for any given biochar. A thorough understanding of the role of biochar-bound minerals in different applications will also allow the design or selection of the most suitable biochar for specific applications based on the consideration of feedstock composition, production parameters, and post-treatment.
Gcb Bioenergy | 2013
Mark J. Gronnow; Vitaliy L. Budarin; Ondřej Mašek; Kyle Crombie; Peter Brownsort; Peter S. Shuttleworth; Peter R. Hurst; James H. Clark
The energy efficiency of torrefaction/pyrolysis of biomass to fuel/biochar was studied using conventional (slow) and microwave (low temperature) pyrolysis. Conventional pyrolysis is approximately three times as energy efficient as microwave pyrolysis, in terms of the energy required to process a unit of feedstock. However, this is more than compensated for by the higher energy content of the condensable and gaseous coproducts from microwave pyrolysis, as these can be utilized to generate the electricity required to drive the process. It is proposed that the most efficient method of torrefaction/biochar production is a combination of conventional heating with ‘catalytic’ amount of microwave irradiation.
Science of The Total Environment | 2016
Wolfram Buss; Margaret C. Graham; Jessica G. Shepherd; Ondřej Mašek
In this study, 19 biochars from marginal biomass, representing all major biomass groups (woody materials, grass, an aquatic plant, anthropogenic wastes) were investigated regarding their content of available potentially toxic elements (PTEs) and nutrients (determined by NH4NO3-extractions) and their effects on cress (Lepidium sativum) seedling growth. The objective was to assess the potential and actual effects of biochar with increased PTE content on plant growth in the context of use in soil amendments and growing media. It showed that the percentage of available PTEs was highest for biochars produced at the highest treatment temperature (HTT) of 750°C. On average, however, for all 19 biochars, the percentage availability of Cu, Cr, Ni and Zn (<1.5% for all) was similar to the percentage availability reported in the literature for the same elements in soils at similar pH values which is a highly important finding. Most biochars exceeded German soil threshold values for NH4NO3-extractable PTEs, such as Zn (by up to 25-fold), As and Cd. Despite this, cress seedling growth tests with 5% biochar in sand did not show any correlations between inhibitory effects (observed in 5 of the 19 biochars) and the available PTE concentrations. Instead, the available K concentration and biochar pH were highly significantly, negatively correlated with seedling growth (K: p<0.001, pH: p=0.004). K had the highest available concentration of all elements and the highest percentage availability (47.7±19.7% of the total K was available). Consequently, available K contributed most to the osmotic pressure and high pH which negatively affected the seedlings. Although a potential risk if some of these marginal biomass-derived biochar were applied at high concentrations, e.g. 5% (>100tha(-1)), when applied at agriculturally realistic application rates (1-10tha(-1)), the resulting smaller increases in pH and available K concentration may actually be beneficial for plant growth.
Journal of Environmental Quality | 2017
Ling Zhao; Wei Zheng; Ondřej Mašek; Xiang Chen; Bowen Gu; Brajendra K. Sharma; Xinde Cao
Pretreatment of biomass with phosphoric acid (HPO) for biochar production was expected to improve carbon (C) retention, porosity structure, and the sorption ability of biochar. This study investigated the interaction of phosphorus with the C structure to elucidate the mechanisms by which HPO simultaneously captured C and created micropores. Sawdust was soaked in diluted HPO and dried for pyrolytic biochar generation at 350, 500, and 650°C. Results showed that HPO pretreatment resulted in 70 to 80% of biomass C retention in biochar, compared with only about 50% remaining without pretreatment. The specific surface area and total pore volume of the HPO-pretreated biochar were 930 m g and 0.558 cm g, respectively, compared with <51.0 m g and 0.046 cm g in the untreated biochar. The volume of micropores (<10 nm) increased from 59.0% to 78.4-81.9%. The presence of HPO shifted the decomposition temperature to a lower value and decreased the energy required for biomass decomposition. Micropore formation was via the insertion of P-O-P into the C lattice, leading to swelling and amplification of amorphous form and lattice defect of the C structure, as evidenced by Raman spectrum and small-angle X-ray scattering analysis. The crosslinking of P-O-P and C bonds resulted in greater biomass C retention in biochar. This biochar-phosphorus composite had a much higher sorption ability for Pb than the unmodified biochar, which was possibly dominated by phosphate precipitation and surface adsorption. This study provided a simple method to improve biochar properties and explored the multiple benefits of HPO in biomass pyrolysis.
Analytica Chimica Acta | 2017
Jasmine Hertzog; Vincent Carré; Yann Le Brech; Colin Logan Mackay; Anthony Dufour; Ondřej Mašek; Frédéric Aubriet
The comprehensive description of complex mixtures such as bio-oils is required to understand and improve the different processes involved during biological, environmental or industrial operation. In this context, we have to consider how different ionization sources can improve a non-targeted approach. Thus, the Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) has been coupled to electrospray ionization (ESI), laser desorption ionization (LDI) and atmospheric pressure photoionization (APPI) to characterize an oak pyrolysis bio-oil. Close to 90% of the all 4500 compound formulae has been attributed to CxHyOz with similar oxygen class compound distribution. Nevertheless, their relative abundance in respect with their double bound equivalent (DBE) value has evidenced significant differences depending on the ion source used. ESI has allowed compounds with low DBE but more oxygen atoms to be ionized. APPI has demonstrated the efficient ionization of less polar compounds (high DBE values and less oxygen atoms). The LDI behavior of bio-oils has been considered intermediate in terms of DBE and oxygen amounts but it has also been demonstrated that a significant part of the features are specifically detected by this ionization method. Thus, the complementarity of three different ionization sources has been successfully demonstrated for the exhaustive characterization by petroleomic approach of a complex mixture.
Springer-Verlag GmbH | 2013
Simon Shackley; Saran Sohi; Rodrigo Ibarrola; Jim Hammond; Ondřej Mašek; Peter Brownsort; Andrew Cross; Miranda Prendergast-Miller; Stuart Haszeldine
Biochar is the solid remains of any organic material that has been heated to at least 350oC in a zero-oxygen or oxygen-limited environment, which is intended to be mixed with soils. If the solid remains are not suitable for addition to soils, or will be burned as a fuel or used as an aggregate in construction, it is defined as char not biochar. There is a very wide range of potential biochar feedstocks, e.g., wood waste, timber, agricultural residues and wastes (straws, bagasse, manure, husks, shells, fibers, etc.), leaves, food wastes, paper and sewage sludge, green waste, distiller’s grain, and many others. Pyrolysis is usually the technology of choice for producing biochar, though biomass gasification also produces smaller char yields. Syngas and pyrolytic bio-liquids, which have a potential use as energy carriers, are produced alongside biochar.