Ondřej Sáňka
Masaryk University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ondřej Sáňka.
Environmental Science & Technology | 2014
Lisa Melymuk; Pernilla Bohlin; Ondřej Sáňka; Karla Pozo; Jana Klánová
With current science and policy needs, more attention is being given to expanding and improving air sampling of semivolatile organic contaminants (SVOCs). However, a wide range of techniques and configurations are currently used (active and passive samplers, different deployment times, different sorbents, etc.) and as the SVOC community looks to assess air measurements on a global scale, questions of comparability arise. We review current air sampling techniques, with a focus on sampling artifacts that can lead to uncertainties or biases in reported concentrations, in particular breakthrough, degradation, meteorological influences, and assumptions regarding passive sampling. From this assessment, we estimate the bias introduced for SVOC concentrations from all factors. Due to the effects of breakthrough, degradation, particle fractions and sampler uptake periods, some current passive and active sampler configurations may underestimate certain SVOCs by 30-95%. We then recommend future study design, appropriateness of sampler types for different study goals, and finally, how the SVOC community should move forward in both research and monitoring to best achieve comparability and consistency in air measurements.
Environmental Science & Technology | 2015
Qian Zheng; Luca Nizzetto; Jun Li; Marie Daniëlle Mulder; Ondřej Sáňka; Gerhard Lammel; Haijian Bing; Xin Liu; Yishan Jiang; Chunling Luo; Gan Zhang
The levels and distribution of polybrominated diphenylethers (PBDEs), novel brominated flame retardants (NBFRs) and Dechlorane Plus (DP) in soils and their dependence on environmental and anthropological factors were investigated in 159 soil samples from 30 background forested mountain sites across China. Decabromodiphenylethane (DBDPE) was the most abundant flame retardant (25-18,000 pg g(-1) and 5-13,000 pg g(-1) in O-horizon and A-horizon, respectively), followed by BDE 209 (nd-5900 pg g(-1) and nd-2400 pg g(-1) in O-horizon and A-horizon, respectively). FRs distributions were primarily controlled by source distribution. The distributions of most phasing-out PBDEs, DP isomers and TBPH were in fact correlated to a population density-based index used as proxy of areas with elevated usage and waste of FR containing products. High concentrations of some NBFRs were however observed in industrialized regions and FR manufacturing plants. Strongly positive correlations were observed between PBDEs and their replacement products suggesting similar emission pattern and environmental behavior. Exposure of mineral subsoils depended on precipitations driving leaching of FRs into the soil core. This was especially evident for some emerging BFRs (TBE, TBPH, and TBB etc.) possibly indicating potential for diffuse groundwater contamination.
Environmental Pollution | 2014
Qian Zheng; Luca Nizzetto; Marie Daniëlle Mulder; Ondřej Sáňka; Gerhard Lammel; Jun Li; Haijian Bing; Xin Liu; Yishan Jiang; Chunlin Luo; Gan Zhang
Organic and mineral soil horizons from forests in 30 mountains across China were analysed for polychlorinated biphenyl (PCB). Soil total organic carbon (TOC) content was a key determinant of PCB distribution explaining over 90% of the differences between organic and mineral soils, and between 30% and 60% of the variance along altitudinal and regional transects. The residual variance (after normalization by TOC) was small. Tri- to tetra-CB levels were higher in the South in relation to high source density and precipitation. Heavier congeners were instead more abundant at mid/high-latitudes where the advection pattern was mainly from long range transport. This resulted in a latitudinal fractionation opposite to theoretical expectations. The study showed that exposure to sources with different characteristics, and possibly accumulation/degradation trends of different congeners in soils being out-of-phase at different latitudes, can lead to an unsteady large scale distribution scenario conflicting with the thermodynamic equilibrium perception.
Environmental Pollution | 2015
Brij Mohan Sharma; Luca Nizzetto; Girija K. Bharat; Shresth Tayal; Lisa Melymuk; Ondřej Sáňka; Petra Přibylová; Ondřej Audy; Thorjørn Larssen
Melting glaciers are natural redistributors of legacy airborne pollutants, affecting exposure of pristine proglacial environments. Our data shows that melting Himalayan glaciers can be major contributors of polychlorinated biphenyls (PCBs) and high-molecular-weight polycyclic aromatic hydrocarbons (PAHs) for surface water in the Gangetic Plain during the dry season. Glacial emissions can exceed in some cases inputs from diffuse sources within the catchment. We analyzed air, deposition and river water in several sections along the Ganges River and its major headwaters. The predominant glacial origin of these contaminants in the Himalayan reach was demonstrated using air-water fugacity ratios and mass balance analysis. The proportion of meltwater emissions compared to pollutant discharge at downstream sections in the central part of the Gangetic Plain was between 2 and 200%. By remobilizing legacy pollutants from melting glaciers, climate change can enhance exposure levels over large and already heavily impacted regions of Northern India.
Science of The Total Environment | 2018
Brij Mohan Sharma; Lisa Melymuk; Girija K. Bharat; Petra Přibylová; Ondřej Sáňka; Jana Klánová; Luca Nizzetto
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous semi-volatile organic pollutants. Their environmental occurrence is of global concern as some of them are carcinogens, mutagens, and teratogens. In this study, concentrations and distributions of 16 priority PAHs (∑PAHs) were measured in air, atmospheric deposition, and surface water at various locations in Himalayan, Middle, and Lower Reaches of the Ganges River, covering a spatial transect of 2500km, during two seasons (pre-monsoon and monsoon). The concentration of ∑PAHs ranged between 2.2 and 182.2ngm-3 in air, between 186 and 8810ngm-2day-1 in atmospheric deposition, and between 0.05 and 65.9ngL-1 in surface water. Air concentrations were strongly correlated with human population density. In the Middle and Lower Reaches of the Ganges River, atmospheric PAHs were mainly attributed to fossil fuel combustion sources. In the Himalayan Reach the influence of forest fire or biomass combustion was evident during the dry pre-monsoon season. Seasonality in concentrations of PAHs in river water was evident in the Himalayan Reach of the river, as a probable consequence of climate-modulated secondary source intensity (i.e. releases from glacier melting). Seasonality faded in the Middle and Lower Reaches of the Ganges where water contamination is expected to mainly reflect anthropogenic primary sources. Ambient air concentrations were used to calculate the probabilistic incremental lifetime cancer risk (ILCR). It was expectedly found to be higher in the Middle and Lower Reaches compared to the Himalayan Reach. The strong correlation between population density and air concentrations suggests population density may be used as a surrogate variable to assess human health risk in data-sparse regions such as the Ganges River basin.
Environmental Science & Technology | 2018
Jiří Kalina; Martin Scheringer; Jana Boruvkova; Petr Kukučka; Petra Přibylová; Ondřej Sáňka; Lisa Melymuk; Milan Vana; Jana Klánová
Passive air sampling of semivolatile organic compounds (SVOCs) is a relatively inexpensive method that facilitates extensive campaigns with numerous sampling sites. An important question in the design of passive-sampling networks concerns the number and location of samplers. We investigate this question with the example of 17 SVOCs sampled at 14 background sites across the Czech Republic. More than 200 time series (length 5-11 years) were used to characterize SVOC levels and trends in air between 2003 and 2015. Six polychlorinated biphenyls (PCBs), 6 polyaromatic hydrocarbons (PAHs), and 5 organochlorine pesticides (OCPs) at 14 sites were assessed using data from the MONET passive sampling network. Significant decreases were found for most PCBs and OCPs whereas hexachlorobenzene (HCB) and most PAHs showed (mostly insignificant) increases. Spatial variability was rather low for PCBs and OCPs except for dichlorodiphenyltrichloroethane (DDT) and rather high for PAHs. The variability of the SVOC levels and trends depends on characteristics of the sites including their remoteness, landscape, population, and pollution sources. The sites can be grouped in distinct clusters, which helps to identify similar and, thereby, potentially redundant sites. This information is useful when monitoring networks need to be optimized regarding the location and number of sites.
Journal of Marine Systems | 2016
Miroslav Brumovský; Jitka Bečanová; Jiří Kohoutek; Henrike Thomas; Wilhelm Petersen; Kai Sørensen; Ondřej Sáňka; Luca Nizzetto
Atmospheric Environment | 2014
Ondřej Sáňka; Lisa Melymuk; Pavel Čupr; Alice Dvorská; Jana Klánová
Archive | 2009
Ondřej Sáňka; Alice Dvorská; Pavel Čupr
Plant Soil and Environment | 2018
R. Vácha; Milan Sáňka; Ondřej Sáňka; Jan Skála; Jarmila Čechmánková