Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ora Bernard is active.

Publication


Featured researches published by Ora Bernard.


Critical Reviews in Biochemistry and Molecular Biology | 2013

Rho-associated coiled-coil kinase (ROCK) signaling and disease

Alice V. Schofield; Ora Bernard

Abstract The small Rho GTPase family of proteins, encompassing the three major G-protein classes Rho, Rac and cell division control protein 42, are key mitogenic signaling molecules that regulate multiple cancer-associated cellular phenotypes including cell proliferation and motility. These proteins are known for their role in the regulation of actin cytoskeletal dynamics, which is achieved through modulating the activity of their downstream effector molecules. The Rho-associated coiled-coil kinase 1 and 2 (ROCK1 and ROCK2) proteins were the first discovered Rho effectors that were primarily established as players in RhoA-mediated stress fiber formation and focal adhesion assembly. It has since been discovered that the ROCK kinases actively phosphorylate a large cohort of actin-binding proteins and intermediate filament proteins to modulate their functions. It is well established that global cellular morphology, as modulated by the three cytoskeletal networks: actin filaments, intermediate filaments and microtubules, is regulated by a variety of accessory proteins whose activities are dependent on their phosphorylation by the Rho-kinases. As a consequence, they regulate many key cellular functions associated with malignancy, including cell proliferation, motility and viability. In this current review, we focus on the role of the ROCK-signaling pathways in disease including cancer.


Journal of Biological Chemistry | 2012

Rho-associated Coiled-coil Kinase (ROCK) Protein Controls Microtubule Dynamics in a Novel Signaling Pathway That Regulates Cell Migration

Alice V. Schofield; Rohan Steel; Ora Bernard

Background: ROCK regulates microtubule acetylation. Results: ROCK phosphorylation of TPPP1/p25 inhibits the interaction between TPPP1 and HDAC6, resulting in increased HDAC6 deacetylation of microtubules, leading to increased cell motility. Conclusion: ROCK phosphorylation of TPPP1 is a novel signaling pathway that regulates cell migration via increased HDAC6 activity and reduced MT acetylation. Significance: This newly discovered ROCK/TPPP/HDAC6/MT signaling pathway might have important implications for cell motility and invasion. The two members of the Rho-associated coiled-coil kinase (ROCK1 and 2) family are established regulators of actin dynamics that are involved in the regulation of the cell cycle as well as cell motility and invasion. Here, we discovered a novel signaling pathway whereby ROCK regulates microtubule (MT) acetylation via phosphorylation of the tubulin polymerization promoting protein 1 (TPPP1/p25). We show that ROCK phosphorylation of TPPP1 inhibits the interaction between TPPP1 and histone deacetylase 6 (HDAC6), which in turn results in increased HDAC6 activity followed by a decrease in MT acetylation. As a consequence, we show that TPPP1 phosphorylation by ROCK increases cell migration and invasion via modulation of cellular acetyl MT levels. We establish here that the ROCK-TPPP1-HDAC6 signaling pathway is important for the regulation of cell migration and invasion.


Cancer Research | 2012

Pharmacological inhibition of LIM Kinase stabilizes microtubules and inhibits neoplastic growth

Renaud Prudent; Emilie Vassal-Stermann; Chi Hung Nguyen; Catherine Pillet; Anne Martinez; Chloé Prunier; Caroline Barette; Emmanuelle Soleilhac; Odile Filhol; Anne Beghin; Glaucio Valdameri; Stéphane Honoré; Samia Aci-Sèche; David S. Grierson; Juliana Antonipillai; Rong Li; Attilio Di Pietro; Charles Dumontet; Diane Braguer; Jean-Claude Florent; Stefan Knapp; Ora Bernard; Laurence Lafanechère

The emergence of tumor resistance to conventional microtubule-targeting drugs restricts their clinical use. Using a cell-based assay that recognizes microtubule polymerization status to screen for chemicals that interact with regulators of microtubule dynamics, we identified Pyr1, a cell permeable inhibitor of LIM kinase, which is the enzyme that phosphorylates and inactivates the actin-depolymerizing factor cofilin. Pyr1 reversibly stabilized microtubules, blocked actin microfilament dynamics, inhibited cell motility in vitro and showed anticancer properties in vivo, in the absence of major side effects. Pyr1 inhibition of LIM kinase caused a microtubule-stabilizing effect, which was independent of any direct effects on the actin cytoskeleton. In addition, Pyr1 retained its activity in multidrug-resistant cancer cells that were resistant to conventional microtubule-targeting agents. Our findings suggest that LIM kinase functions as a signaling node that controls both actin and microtubule dynamics. LIM kinase may therefore represent a targetable enzyme for cancer treatment.


PLOS ONE | 2011

The p38/MK2/Hsp25 Pathway Is Required for BMP-2-Induced Cell Migration

Cristina Gamell; Antonio G. Susperregui; Ora Bernard; Jose Luis Rosa; Francesc Ventura

Background Bone morphogenetic proteins (BMPs) have been shown to participate in the patterning and specification of several tissues and organs during development and to regulate cell growth, differentiation and migration in different cell types. BMP-mediated cell migration requires activation of the small GTPase Cdc42 and LIMK1 activities. In our earlier report we showed that activation of LIMK1 also requires the activation of PAKs through Cdc42 and PI3K. However, the requirement of additional signaling is not clearly known. Methodology/Principal Findings Activation of p38 MAPK has been shown to be relevant for a number of BMP-2′s physiological effects. We report here that BMP-2 regulation of cell migration and actin cytoskeleton remodelling are dependent on p38 activity. BMP-2 treatment of mesenchymal cells results in activation of the p38/MK2/Hsp25 signaling pathway downstream from the BMP receptors. Moreover, chemical inhibition of p38 signaling or genetic ablation of either p38α or MK2 blocks the ability to activate the downstream effectors of the pathway and abolishes BMP-2-induction of cell migration. These signaling effects on p38/MK2/Hsp25 do not require the activity of either Cdc42 or PAK, whereas p38/MK2 activities do not significantly modify the BMP-2-dependent activation of LIMK1, measured by either kinase activity or with an antibody raised against phospho-threonine 508 at its activation loop. Finally, phosphorylated Hsp25 colocalizes with the BMP receptor complexes in lamellipodia and overexpression of a phosphorylation mutant form of Hsp25 is able to abolish the migration of cells in response to BMP-2. Conclusions These results indicate that Cdc42/PAK/LIMK1 and p38/MK2/Hsp25 pathways, acting in parallel and modulating specific actin regulatory proteins, play a critical role in integrating responses during BMP-induced actin reorganization and cell migration.


Journal of Biological Chemistry | 2013

Tubulin polymerization promoting protein 1 (Tppp1) phosphorylation by Rho-associated coiled-coil kinase (rock) and cyclin-dependent kinase 1 (Cdk1) inhibits microtubule dynamics to increase cell proliferation.

Alice V. Schofield; Cristina Gamell; Randy Suryadinata; Boris Sarcevic; Ora Bernard

Background: Tppp1 regulates microtubule dynamics and cell growth. Results: Tppp1-mediated inhibition of the G1/S-phase and the mitosis to G1-phase transitions are relieved by Rock and Cdk1 phosphorylation. Conclusion: Cell cycle-dependent Tppp1 phosphorylation regulates cell proliferation. Significance: The newly discovered role of Tppp1 and its regulatory pathways in cell growth might have important implications in hyper-proliferative diseases. Tubulin polymerization promoting protein 1 (Tppp1) regulates microtubule (MT) dynamics via promoting MT polymerization and inhibiting histone deacetylase 6 (Hdac6) activity to increase MT acetylation. Our results reveal that as a consequence, Tppp1 inhibits cell proliferation by delaying the G1/S-phase and the mitosis to G1-phase transitions. We show that phosphorylation of Tppp1 by Rho-associated coiled-coil kinase (Rock) prevents its Hdac6 inhibitory activity to enable cells to enter S-phase. Whereas, our analysis of the role of Tppp1 during mitosis revealed that inhibition of its MT polymerizing and Hdac6 regulatory activities were necessary for cells to re-enter the G1-phase. During this investigation, we also discovered that Tppp1 is a novel Cyclin B/Cdk1 (cyclin-dependent kinase) substrate and that Cdk phosphorylation of Tppp1 inhibits its MT polymerizing activity. Overall, our results show that dual Rock and Cdk phosphorylation of Tppp1 inhibits its regulation of the cell cycle to increase cell proliferation.


Clinical & Experimental Metastasis | 2013

LIM kinase inhibition reduces breast cancer growth and invasiveness but systemic inhibition does not reduce metastasis in mice.

Rong Li; Judy P. Doherty; Juliana Antonipillai; Sheng Chen; Mark G. Devlin; Kathryn Visser; Jonathan B. Baell; Ian P. Street; Robin L. Anderson; Ora Bernard

Metastasis is the major cause of morbidity and mortality in cancer patients. An understanding of the genes that regulate metastasis and development of therapies to target these genes is needed urgently. Since members of the LIM kinase (LIMK) family are key regulators of the actin cytoskeleton and are involved in cell motility and invasion, LIMK is considered to be a good therapeutic target for metastatic disease. Here we investigated the consequences of LIMK inhibition on growth and metastasis of human and mouse mammary tumors. LIMK activity was reduced in tumor cells by expression of dominant-negative LIMK1, by RNA interference or with a selective LIMK inhibitor. The extent of phosphorylation of the LIMK substrate, cofilin, of proliferation and invasion in 2D and 3D culture and of tumor growth and metastasis in mice were assessed. Inhibition of LIMK activity efficiently reduced the pro-invasive properties of tumor cells in vitro. Tumors expressing dominant-negative LIMK1 grew more slowly and were less metastatic in mice. However, systemic administration of a LIMK inhibitor did not reduce either primary tumor growth or spontaneous metastasis. Surprisingly, metastasis to the liver was increased after administration of the inhibitor. These data raise a concern about the use of systemic LIMK inhibitors for the treatment of metastatic breast cancer.


PLOS ONE | 2013

LIMK2 Mediates Resistance to Chemotherapeutic Drugs in Neuroblastoma Cells through Regulation of Drug-Induced Cell Cycle Arrest

Cristina Gamell; Alice V. Schofield; Randy Suryadinata; Boris Sarcevic; Ora Bernard

Drug resistance is a major obstacle for the successful treatment of many malignancies, including neuroblastoma, the most common extracranial solid tumor in childhood. Therefore, current attempts to improve the survival of neuroblastoma patients, as well as those with other cancers, largely depend on strategies to counter cancer cell drug resistance; hence, it is critical to understand the molecular mechanisms that mediate resistance to chemotherapeutics. The levels of LIM-kinase 2 (LIMK2) are increased in neuroblastoma cells selected for their resistance to microtubule-targeted drugs, suggesting that LIMK2 might be a possible target to overcome drug resistance. Here, we report that depletion of LIMK2 sensitizes SHEP neuroblastoma cells to several microtubule-targeted drugs, and that this increased sensitivity correlates with enhanced cell cycle arrest and apoptosis. Furthermore, we show that LIMK2 modulates microtubule acetylation and the levels of tubulin Polymerization Promoting Protein 1 (TPPP1), suggesting that LIMK2 may participate in the mitotic block induced by microtubule-targeted drugs through regulation of the microtubule network. Moreover, LIMK2-depleted cells also show an increased sensitivity to certain DNA-damage agents, suggesting that LIMK2 might act as a general pro-survival factor. Our results highlight the exciting possibility of combining specific LIMK2 inhibitors with anticancer drugs in the treatment of multi-drug resistant cancers.


Cancer Research | 2016

The E3-ligase E6AP Represses Breast Cancer Metastasis via Regulation of ECT2-Rho Signaling

Mariam Mansour; Sue Haupt; Ai-Leen Chan; Nathan Godde; Alexandra Rizzitelli; Sherene Loi; Franco Caramia; Siddhartha Deb; Elena A. Takano; Mark J. Bishton; Cameron N. Johnstone; Brendon J. Monahan; Yarra Levav-Cohen; Yong-hui Jiang; Alpha S. Yap; Stephen B. Fox; Ora Bernard; Robin L. Anderson; Ygal Haupt

Metastatic disease is the major cause of breast cancer-related death and despite many advances, current therapies are rarely curative. Tumor cell migration and invasion require actin cytoskeletal reorganization to endow cells with capacity to disseminate and initiate the formation of secondary tumors. However, it is still unclear how these migratory cells colonize distant tissues to form macrometastases. The E6-associated protein, E6AP, acts both as an E3 ubiquitin-protein ligase and as a coactivator of steroid hormone receptors. We report that E6AP suppresses breast cancer invasiveness, colonization, and metastasis in mice, and in breast cancer patients, loss of E6AP associates with poor prognosis, particularly for basal breast cancer. E6AP regulates actin cytoskeletal remodeling via regulation of Rho GTPases, acting as a negative regulator of ECT2, a GEF required for activation of Rho GTPases. E6AP promotes ubiquitination and proteasomal degradation of ECT2 for which high expression predicts poor prognosis in breast cancer patients. We conclude that E6AP suppresses breast cancer metastasis by regulating actin cytoskeleton remodeling through the control of ECT2 and Rho GTPase activity. These findings establish E6AP as a novel suppressor of metastasis and provide a compelling rationale for inhibition of ECT2 as a therapeutic approach for patients with metastatic breast cancer. Cancer Res; 76(14); 4236-48. ©2016 AACR.


Biochemical and Biophysical Research Communications | 2013

Tubulin polymerization promoting protein 1 (TPPP1) increases β-catenin expression through inhibition of HDAC6 activity in U2OS osteosarcoma cells

Alice V. Schofield; Cristina Gamell; Ora Bernard

The Rho-associated coiled-coil kinase (ROCK) family of proteins, including ROCK1 and ROCK2, are key regulators of actin and intermediate filament morphology. The newly discovered ROCK substrate Tubulin polymerization promoting protein 1 (TPPP1) promotes microtubule polymerization and inhibits the activity of Histone deacetylase 6 (HDAC6). The effect of TPPP1 on HDAC6 activity is inhibited by ROCK signaling. Moreover, it was recently demonstrated that ROCK activity increases the cellular expression of the oncogene β-catenin, which is a HDAC6 substrate. In this study, we investigated the interplay between ROCK-TPPP1-HDAC6 signaling and β-catenin expression. We demonstrate that β-catenin expression is increased with ROCK signaling activation and is reduced with increased TPPP1 expression in U2OS cells. Further investigation revealed that ROCK-mediated TPPP1 phosphorylation, which prevents its binding to HDAC6, negates TPPP1-mediated reduction in β-catenin expression. We also show that increased HDAC6 activity resulting from ROCK signaling activation reduced β-catenin acetylation at Lys-49, which was also accompanied by its decreased phosphorylation by Caesin kinase 1 (CK1) and Glycogen synthase kinase 3β (GSK3β), thus preventing its proteasomal degradation. Overall, our results suggest that ROCK regulates β-catenin stability in cells via preventing TPPP1-mediated inhibition of HDAC6 activity, to reduce its acetylation and degradation via phosphorylation by CK1 and GSK3β.


Cell Cycle | 2016

Cyclin-dependent kinase-mediated phosphorylation of breast cancer metastasis suppressor 1 (BRMS1) affects cell migration

Siti Nur Ain Roesley; Randy Suryadinata; Emma Morrish; Anthonius Ricardo Tan; Samah M.A. Issa; Jonathan S. Oakhill; Ora Bernard; Danny R. Welch; Boris Sarcevic

ABSTRACT Expression of Breast Cancer Metastasis Suppressor 1 (BRMS1) reduces the incidence of metastasis in many human cancers, without affecting tumorigenesis. BRMS1 carries out this function through several mechanisms, including regulation of gene expression by binding to the mSin3/histone deacetylase (HDAC) transcriptional repressor complex. In the present study, we show that BRMS1 is a novel substrate of Cyclin-Dependent Kinase 2 (CDK2) that is phosphorylated on serine 237 (S237). Although CDKs are known to regulate cell cycle progression, the mutation of BRMS1 on serine 237 did not affect cell cycle progression and proliferation of MDA-MB-231 breast cancer cells; however, their migration was affected. Phosphorylation of BRMS1 does not affect its association with the mSin3/HDAC transcriptional repressor complex or its transcriptional repressor activity. The serine 237 phosphorylation site is immediately proximal to a C-terminal nuclear localization sequence that plays an important role in BRMS1-mediated metastasis suppression but phosphorylation does not control BRMS1 subcellular localization. Our studies demonstrate that CDK-mediated phosphorylation of BRMS1 regulates the migration of tumor cells.

Collaboration


Dive into the Ora Bernard's collaboration.

Top Co-Authors

Avatar

Alice V. Schofield

St. Vincent's Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Boris Sarcevic

St. Vincent's Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Randy Suryadinata

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Cristina Gamell

St. Vincent's Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rong Li

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Ai-Leen Chan

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Alexandra Rizzitelli

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Alpha S. Yap

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Cameron N. Johnstone

Peter MacCallum Cancer Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge