Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Randy Suryadinata is active.

Publication


Featured researches published by Randy Suryadinata.


Bioscience Reports | 2010

Control of cell cycle progression by phosphorylation of cyclin-dependent kinase (CDK) substrates.

Randy Suryadinata; Martin Sadowski; Boris Sarcevic

The eukaryotic cell cycle is a fundamental evolutionarily conserved process that regulates cell division from simple unicellular organisms, such as yeast, through to higher multicellular organisms, such as humans. The cell cycle comprises several phases, including the S-phase (DNA synthesis phase) and M-phase (mitotic phase). During S-phase, the genetic material is replicated, and is then segregated into two identical daughter cells following mitotic M-phase and cytokinesis. The S- and M-phases are separated by two gap phases (G1 and G2) that govern the readiness of cells to enter S- or M-phase. Genetic and biochemical studies demonstrate that cell division in eukaryotes is mediated by CDKs (cyclin-dependent kinases). Active CDKs comprise a protein kinase subunit whose catalytic activity is dependent on association with a regulatory cyclin subunit. Cell-cycle-stage-dependent accumulation and proteolytic degradation of different cyclin subunits regulates their association with CDKs to control different stages of cell division. CDKs promote cell cycle progression by phosphorylating critical downstream substrates to alter their activity. Here, we will review some of the well-characterized CDK substrates to provide mechanistic insights into how these kinases control different stages of cell division.


Molecular and Cellular Biology | 2010

Molecular Basis for Lysine Specificity in the Yeast Ubiquitin-Conjugating Enzyme Cdc34

Martin Sadowski; Randy Suryadinata; Xianning Lai; Jörg Heierhorst; Boris Sarcevic

ABSTRACT Ubiquitin (Ub)-conjugating enzymes (E2s) and ubiquitin ligases (E3s) catalyze the attachment of Ub to lysine residues in substrates and Ub during monoubiquitination and polyubiquitination. Lysine selection is important for the generation of diverse substrate-Ub structures, which provides versatility to this pathway in the targeting of proteins to different fates. The mechanisms of lysine selection remain poorly understood, with previous studies suggesting that the ubiquitination site(s) is selected by the E2/E3-mediated positioning of a lysine(s) toward the E2/E3 active site. By studying the polyubiquitination of Sic1 by the E2 protein Cdc34 and the RING E3 Skp1/Cul1/F-box (SCF) protein, we now demonstrate that in addition to E2/E3-mediated positioning, proximal amino acids surrounding the lysine residues in Sic1 and Ub are critical for ubiquitination. This mechanism is linked to key residues composing the catalytic core of Cdc34 and independent of SCF. Changes to these core residues altered the lysine preference of Cdc34 and specified whether this enzyme monoubiquitinated or polyubiquitinated Sic1. These new findings indicate that compatibility between amino acids surrounding acceptor lysine residues and key amino acids in the catalytic core of ubiquitin-conjugating enzymes is an important mechanism for lysine selection during ubiquitination.


Journal of Biological Chemistry | 2013

Tubulin polymerization promoting protein 1 (Tppp1) phosphorylation by Rho-associated coiled-coil kinase (rock) and cyclin-dependent kinase 1 (Cdk1) inhibits microtubule dynamics to increase cell proliferation.

Alice V. Schofield; Cristina Gamell; Randy Suryadinata; Boris Sarcevic; Ora Bernard

Background: Tppp1 regulates microtubule dynamics and cell growth. Results: Tppp1-mediated inhibition of the G1/S-phase and the mitosis to G1-phase transitions are relieved by Rock and Cdk1 phosphorylation. Conclusion: Cell cycle-dependent Tppp1 phosphorylation regulates cell proliferation. Significance: The newly discovered role of Tppp1 and its regulatory pathways in cell growth might have important implications in hyper-proliferative diseases. Tubulin polymerization promoting protein 1 (Tppp1) regulates microtubule (MT) dynamics via promoting MT polymerization and inhibiting histone deacetylase 6 (Hdac6) activity to increase MT acetylation. Our results reveal that as a consequence, Tppp1 inhibits cell proliferation by delaying the G1/S-phase and the mitosis to G1-phase transitions. We show that phosphorylation of Tppp1 by Rho-associated coiled-coil kinase (Rock) prevents its Hdac6 inhibitory activity to enable cells to enter S-phase. Whereas, our analysis of the role of Tppp1 during mitosis revealed that inhibition of its MT polymerizing and Hdac6 regulatory activities were necessary for cells to re-enter the G1-phase. During this investigation, we also discovered that Tppp1 is a novel Cyclin B/Cdk1 (cyclin-dependent kinase) substrate and that Cdk phosphorylation of Tppp1 inhibits its MT polymerizing activity. Overall, our results show that dual Rock and Cdk phosphorylation of Tppp1 inhibits its regulation of the cell cycle to increase cell proliferation.


Cells | 2014

Mechanisms of Generating Polyubiquitin Chains of Different Topology

Randy Suryadinata; Siti Nur Ain Roesley; George Yang; Boris Sarcevic

Ubiquitination is an important post-translational process involving attachment of the ubiquitin molecule to lysine residue/s on a substrate protein or on another ubiquitin molecule, leading to the formation of protein mono-, multi- or polyubiquitination. Protein ubiquitination requires a cascade of three enzymes, where the interplay between different ubiquitin-conjugating and ubiquitin-ligase enzymes generates diverse ubiquitinated proteins topologies. Structurally diverse ubiquitin conjugates are recognized by specific proteins with ubiquitin-binding domains (UBDs) to target the substrate proteins of different pathways. The mechanism/s for generating the different ubiquitinated proteins topologies is not well understood. Here, we will discuss our current understanding of the mechanisms underpinning the generation of mono- or polyubiquitinated substrates. In addition, we will discuss how linkage-specific polyubiquitin chains through lysines-11, -48 or -63 are formed to target proteins to different fates by binding specific UBD proteins.


Journal of Biological Chemistry | 2011

Cyclin-dependent Kinase-mediated Phosphorylation of RBP1 and pRb Promotes Their Dissociation to Mediate Release of the SAP30·mSin3·HDAC Transcriptional Repressor Complex

Randy Suryadinata; Martin Sadowski; Rohan Steel; Boris Sarcevic

Eukaryotic cell cycle progression is mediated by phosphorylation of protein substrates by cyclin-dependent kinases (CDKs). A critical substrate of CDKs is the product of the retinoblastoma tumor suppressor gene, pRb, which inhibits G1-S phase cell cycle progression by binding and repressing E2F transcription factors. CDK-mediated phosphorylation of pRb alleviates this inhibitory effect to promote G1-S phase cell cycle progression. pRb represses transcription by binding to the E2F transactivation domain and recruiting the mSin3·histone deacetylase (HDAC) transcriptional repressor complex via the retinoblastoma-binding protein 1 (RBP1). RBP1 binds to the pocket region of pRb via an LXCXE motif and to the SAP30 subunit of the mSin3·HDAC complex and, thus, acts as a bridging protein in this multisubunit complex. In the present study we identified RBP1 as a novel CDK substrate. RBP1 is phosphorylated by CDK2 on serines 864 and 1007, which are N- and C-terminal to the LXCXE motif, respectively. CDK2-mediated phosphorylation of RBP1 or pRb destabilizes their interaction in vitro, with concurrent phosphorylation of both proteins leading to their dissociation. Consistent with these findings, RBP1 phosphorylation is increased during progression from G1 into S-phase, with a concurrent decrease in its association with pRb in MCF-7 breast cancer cells. These studies provide new mechanistic insights into CDK-mediated regulation of the pRb tumor suppressor during cell cycle progression, demonstrating that CDK-mediated phosphorylation of both RBP1 and pRb induces their dissociation to mediate release of the mSin3·HDAC transcriptional repressor complex from pRb to alleviate transcriptional repression of E2F.


Organic and Biomolecular Chemistry | 2014

Comparison of alternative nucleophiles for Sortase A-mediated bioconjugation and application in neuronal cell labelling

Samuel Baer; Julie Nigro; Mariusz P. Madej; Rebecca M. Nisbet; Randy Suryadinata; Gregory Coia; Lisa P. T. Hong; Timothy E. Adams; Charlotte C. Williams; Stewart D. Nuttall

The Sortase A (SrtA) enzyme from Staphylococcus aureus catalyses covalent attachment of protein substrates to pentaglycine cross-bridges in the Gram positive bacterial cell wall. In vitro SrtA-mediated protein ligation is now an important protein engineering tool for conjugation of substrates containing the LPXTGX peptide recognition sequence to oligo-glycine nucleophiles. In order to explore the use of alternative nucleophiles in this system, five different rhodamine-labelled compounds, with N-terminal nucleophilic amino acids, triglycine, glycine, and lysine, or N-terminal non-amino acid nucleophiles ethylenediamine and cadaverine, were synthesized. These compounds were tested for their relative abilities to function as nucleophiles in SrtA-mediated bioconjugation reactions. N-Terminal triglycine, glycine and ethylenediamine were all efficient in labelling a range of LPETGG containing recombinant antibody and scaffold proteins and peptides, while reduced activity was observed for the other nucleophiles across the range of proteins and peptides studied. Expansion of the range of available nucleophiles which can be utilised in SrtA-mediated bioconjugation expands the range of potential applications for this technology. As a demonstration of the utility of this system, SrtA coupling was used to conjugate the triglycine rhodamine-labelled nucleophile to the C-terminus of an Im7 scaffold protein displaying Aβ, a neurologically important peptide implicated in Alzheimers disease. Purified, labelled protein showed Aβ-specific targeting to mammalian neuronal cells. Demonstration of targeting neuronal cells with a chimeric protein illustrates the power of this system, and suggests that SrtA-mediated direct cell-surface labelling and visualisation is an achievable goal.


Cell Cycle | 2013

Molecular and structural insight into lysine selection on substrate and ubiquitin lysine 48 by the ubiquitin-conjugating enzyme Cdc34

Randy Suryadinata; Jessica K. Holien; George Yang; Michael W. Parker; Elena Papaleo; Boris Sarcevic

The attachment of ubiquitin (Ub) to lysines on substrates or itself by ubiquitin-conjugating (E2) and ubiquitin ligase (E3) enzymes results in protein ubiquitination. Lysine selection is important for generating diverse substrate-Ub structures and targeting proteins to different fates; however, the mechanisms of lysine selection are not clearly understood. The positioning of lysine(s) toward the E2/E3 active site and residues proximal to lysines are critical in their selection. We investigated determinants of lysine specificity of the ubiquitin-conjugating enzyme Cdc34, toward substrate and Ub lysines. Evaluation of the relative importance of different residues positioned −2, −1, +1 and +2 toward ubiquitination of its substrate, Sic1, on lysine 50 showed that charged residues in the −1 and −2 positions negatively impact on ubiquitination. Modeling suggests that charged residues at these positions alter the native salt-bridge interactions in Ub and Cdc34, resulting in misplacement of Sic1 lysine 50 in the Cdc34 catalytic cleft. During polyubiquitination, Cdc34 showed a strong preference for Ub lysine 48 (K48), with lower activity towards lysine 11 (K11) and lysine 63 (K63). Mutating the −2, −1, +1 and +2 sites surrounding K11 and K63 to mimic those surrounding K48 did not improve their ubiquitination, indicating that further determinants are important for Ub K48 specificity. Modeling the ternary structure of acceptor Ub with the Cdc34~Ub complex as well as in vitro ubiquitination assays unveiled the importance of K6 and Q62 of acceptor Ub for Ub K48 polyubiquitination. These findings provide molecular and structural insight into substrate lysine and Ub K48 specificity by Cdc34.


Developmental Biology | 2010

Geminin and Brahma act antagonistically to regulate EGFR–Ras–MAPK signaling in Drosophila

Anabel Herr; Lisa Mckenzie; Randy Suryadinata; Martin Sadowski; Linda M. Parsons; Boris Sarcevic; Helena E. Richardson

Geminin was identified in Xenopus as a dual function protein involved in the regulation of DNA replication and neural differentiation. In Xenopus, Geminin acts to antagonize the Brahma (Brm) chromatin-remodeling protein, Brg1, during neural differentiation. Here, we investigate the interaction of Geminin with the Brm complex during Drosophila development. We demonstrate that Drosophila Geminin (Gem) interacts antagonistically with the Brm-BAP complex during wing development. Moreover, we show in vivo during wing development and biochemically that Brm acts to promote EGFR-Ras-MAPK signaling, as indicated by its effects on pERK levels, while Gem opposes this. Furthermore, gem and brm alleles modulate the wing phenotype of a Raf gain-of-function mutant and the eye phenotype of a EGFR gain-of-function mutant. Western analysis revealed that Gem over-expression in a background compromised for Brm function reduces Mek (MAPKK/Sor) protein levels, consistent with the decrease in ERK activation observed. Taken together, our results show that Gem and Brm act antagonistically to modulate the EGFR-Ras-MAPK signaling pathway, by affecting Mek levels during Drosophila development.


Faraday Discussions | 2016

Amphiphilic brush polymers produced using the RAFT polymerisation method stabilise and reduce the cell cytotoxicity of lipid lyotropic liquid crystalline nanoparticles

Jiali Zhai; Randy Suryadinata; Bao Luan; Nhiem Tran; Tracey M. Hinton; Julian Ratcliffe; Xiaojuan Hao; Calum J. Drummond

Self-assembled lipid lyotropic liquid crystalline nanoparticles such as hexosomes and cubosomes contain internal anisotropic and isotropic nanostructures, respectively. Despite the remarkable potential of such nanoparticles in various biomedical applications, the stabilisers used in formulating the nanoparticles are often limited to commercially available polymers such as the Pluronic block copolymers. This study explored the potential of using Reversible Addition-Fragmentation chain Transfer (RAFT) technology to design amphiphilic brush-type polymers for the purpose of stabilising phytantriol and monoolein-based lipid dispersions. The synthesised brush-type polymers consisted of a hydrophobic C12 short chain and a hydrophilic poly(ethylene glycol)methyl ether acrylate (PEGA) long chain with multiple 9-unit poly(ethylene oxide) (PEO) brushes with various molecular weights. It was observed that increasing the PEO brush density and thus the length of the hydrophilic component improved the stabilisation effectiveness for phytantriol and monoolein-based cubosomes. Synchrotron small-angle X-ray scattering (SAXS) experiments confirmed that the RAFT polymer-stabilised cubosomes had an internal double-diamond cubic phase with tunable water channel sizes. These properties were dependent on the molecular weight of the polymers, which were considered in some cases to be anisotropically distributed within the cubosomes. The in vitro toxicity of the cubosomes was assessed by cell viability of two human adenocarcinoma cell lines and haemolytic activities to mouse erythrocytes. The results showed that phytantriol cubosomes stabilised by the RAFT polymers were less toxic compared to their Pluronic F127-stabilised analogues. This study provides valuable insight into designing non-linear amphiphilic polymers for the effective stabilisation and cellular toxicity improvement of self-assembled lipid lyotropic liquid crystalline nanoparticles.


Acta Crystallographica Section D-biological Crystallography | 2015

Structural and biochemical analyses of a Clostridium perfringens sortase D transpeptidase

Randy Suryadinata; Shane A. Seabrook; Timothy E. Adams; Stewart D. Nuttall; Thomas S. Peat

The structure of C. perfringens sortase D was determined at 1.99 Å resolution. Comparative biochemical and structural analyses revealed that this transpeptidase may represent a new subclass of the sortase D family.

Collaboration


Dive into the Randy Suryadinata's collaboration.

Top Co-Authors

Avatar

Boris Sarcevic

St. Vincent's Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Martin Sadowski

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Ora Bernard

St. Vincent's Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Siti Nur Ain Roesley

St. Vincent's Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Stewart D. Nuttall

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Xiaojuan Hao

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Aditya V. Vashi

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Alice V. Schofield

St. Vincent's Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Charlotte C. Williams

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Cristina Gamell

St. Vincent's Institute of Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge