Orens Pasqueron de Fommervault
University of Paris
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Orens Pasqueron de Fommervault.
Journal of Geophysical Research | 2015
Orens Pasqueron de Fommervault; Fabrizio D'Ortenzio; Antoine Mangin; Romain Serra; Christophe Migon; Hervé Claustre; Héloïse Lavigne; Maurizio Ribera d'Alcalà; Louis Prieur; Vincent Taillandier; Catherine Schmechtig; Antoine Poteau; Edouard Leymarie; Aurélie Dufour; Florent Besson; Grigor Obolensky
In 2013, as part of the French NAOS (Novel Argo Oceanic observing System) program, five profiling floats equipped with nitrate sensors (SUNA-V2) together with CTD and bio-optical sensors were deployed in the Mediterranean Sea. At present day, more than 500 profiles of physical and biological parameters were acquired, and significantly increased the number of available nitrate data in the Mediterranean Sea. Results obtained from floats confirm the general view of the basin, and the well-known west-to-east gradient of oligotrophy. At seasonal scale, the north western Mediterranean displays a clear temperate pattern sustained by both deep winter mixed layer and shallow nitracline. The other sampled areas follow a subtropical regime (nitracline depth and mixed layer depth are generally decoupled). Float data also permit to highlight the major contribution of high-frequency processes in controlling the nitrate supply during winter in the north western Mediterranean Sea and in altering the nitrate stock in subsurface in the eastern basin.
Journal of Geophysical Research | 2017
Nicolas Mayot; Fabrizio D'Ortenzio; Vincent Taillandier; Louis Prieur; Orens Pasqueron de Fommervault; Hervé Claustre; Anthony Bosse; Pierre Testor; Pascal Conan
The North Western Mediterranean Sea exhibits recurrent and significant autumnal and spring phytoplankton blooms. The existence of these two blooms coincide with typical temperate dynamics. To determine the potential control of physical and biogeochemical factors on these phytoplankton blooms, data from a multiplatform approach (combining ships, Argo and BGC-Argo floats, and bio-optical gliders) were analyzed in association with satellite observations in 2012-2013. The satellite framework allowed a simultaneous analysis over the whole annual cycle of in situ observations of mixed layer depth, photosynthetical available radiation, particle backscattering, nutrients (nitrate and silicate) and chlorophyll-a concentrations. During the year 2012-2013, satellite ocean color observations, confirmed by in situ data, have revealed the existence of two areas (or bioregions) with comparable autumnal blooms but contrasting spring blooms. In both bioregions, the ratio of the euphotic zone (defined as the isolume 0.415 mol photons m−2 d−1, Z0.415) and the MLD identified the initiation of the autumnal bloom, as well as the maximal annual increase in [Chl-a] in spring. In fact, the autumnal phytoplankton bloom might be initiated by mixing of the summer shallowing deep chlorophyll maximum, while the spring restratification (when Z0.415/MLD ratio became > 1) might induce surface phytoplankton production that largely overcomes the losses. Finally, winter deep convection events that took place in one of the bioregions induced higher net accumulation rate of phytoplankton in spring associated with a diatom-dominated phytoplankton community principally. We suggest that very deep winter MLD lead to an increase in surface silicates availability, which favored the development of diatoms.
Journal of Geophysical Research | 2017
Pierre Testor; Anthony Bosse; Loïc Houpert; Félix Margirier; Laurent Mortier; Hervé Legoff; Denis Dausse; Matthieu Labaste; Johannes Karstensen; Daniel J. Hayes; Antonio Olita; Alberto Ribotti; Katrin Schroeder; Jacopo Chiggiato; Reiner Onken; Emma Heslop; Baptiste Mourre; Fabrizio D'Ortenzio; Nicolas Mayot; Héloïse Lavigne; Orens Pasqueron de Fommervault; Laurent Coppola; Louis Prieur; Vincent Taillandier; Xavier Durrieu de Madron; François Bourrin; Gaël Many; Pierre Damien; Claude Estournel; Patrick Marsaleix
During winter 2012–2013, open‐ocean deep convection which is a major driver for the thermohaline circulation and ventilation of the ocean, occurred in the Gulf of Lions (Northwestern Mediterranean Sea) and has been thoroughly documented thanks in particular to the deployment of several gliders, Argo profiling floats, several dedicated ship cruises, and a mooring array during a period of about a year. Thanks to these intense observational efforts, we show that deep convection reached the bottom in winter early in February 2013 in a area of maximum 28 ± 3 109 m2. We present new quantitative results with estimates of heat and salt content at the subbasin scale at different time scales (on the seasonal scale to a 10 days basis) through optimal interpolation techniques, and robust estimates of the deep water formation rate of 2.0 ± 0.2 Sv. We provide an overview of the spatiotemporal coverage that has been reached throughout the seasons this year and we highlight some results based on data analysis and numerical modeling that are presented in this special issue. They concern key circulation features for the deep convection and the subsequent bloom such as Submesoscale Coherent Vortices (SCVs), the plumes, and symmetric instability at the edge of the deep convection area.
Frontiers in Marine Science | 2017
Raphaëlle Sauzède; Henry C. Bittig; Hervé Claustre; Orens Pasqueron de Fommervault; Jean-Pierre Gattuso; Louis Legendre; Kenneth S. Johnson
A neural network-based method (CANYON: CArbonate system and Nutrients concentration from hYdrological properties and Oxygen using a Neural-network) was developed to estimate water-column biogeochemically relevant variables in the Global Ocean. These are the concentrations of 3 nutrients [nitrate (NO3−), phosphate (PO43−) and silicate (Si(OH)4)] and 4 carbonate system parameters [total alkalinity (AT), dissolved inorganic carbon (CT), pH (pHT) and partial pressure of CO2 (pCO2)], which are estimated from concurrent in situ measurements of temperature, salinity, hydrostatic pressure and oxygen (O2) together with sampling latitude, longitude and date. Seven neural-networks were developed using the GLODAPv2 database, which is largely representative of the diversity of open-ocean conditions, hence making CANYON potentially applicable to most oceanic environments. For each variable, CANYON was trained using 80 % randomly chosen data from the whole database (after eight 10° x 10° zones removed providing an “independent data-set” for additional validation), the remaining 20 % data were used for the neural-network test of validation. Overall, CANYON retrieved the variables with high accuracies (RMSE): 0.93 mol kg-1 (NO3−), 0.07 mol kg-1 (PO43-), 3.0 mol kg-1 (Si(OH)4), 0.019 (pHT), 7 mol kg-1 (AT), 10 mol kg-1 (CT) and 28 atm (pCO2). This was confirmed for the 8 independent zones not included in the training process. CANYON was also applied to the Hawaiian Time Series site to produce a 22-years long simulated time series for the above 7 variables. Comparison of modeled and measured data was also very satisfactory (RMSE in the order of magnitude of RMSE from validation test). CANYON is thus a promising method to derive distributions of key biogeochemical variables. It could be used for a variety of global and regional applications ranging from data quality control to the production of datasets of variables required for initialization and validation of biogeochemical models but difficult to obtain. In particular, combining the increased coverage of the global Biogeochemical-Argo program, where O2 is one of the core variables now very accurately measured, with the CANYON approach offers the fascinating perspective of obtaining large-scale estimates of key biogeochemical variables with unprecedented spatial and temporal resolutions.
Journal of Geophysical Research | 2017
Faycal Kessouri; Caroline Ulses; Claude Estournel; Patrick Marsaleix; Tatiana Severin; Mireille Pujo-Pay; Jocelyne Caparros; Patrick Raimbault; Orens Pasqueron de Fommervault; Fabrizio D'Ortenzio; Vincent Taillandier; Pierre Testor; Pascal Conan
The aim of this study is to understand the biogeochemical cycles of the northwestern Mediterranean Sea (NW Med), where a recurrent spring bloom related to dense water formation occurs. We used a coupled physical-biogeochemical model at high resolution to simulate realistic one-year period and analyze the nitrogen (N) and phosphorus (P) cycles. First, the model was evaluated using cruises carried out in winter, spring and summer and a Bio-Argo float deployed in spring. Then, the annual cycle of meteorological and hydrodynamical forcing and nutrients stocks in the upper layer were analyzed. Third, the effect of biogeochemical and physical processes on N and P was quantified. Fourth, we quantified the effects of the physical and biological processes on the seasonal changes of the molar NO3:PO4 ratio, particularly high compared to the global ocean. The deep convection reduced the NO3:PO4 ratio of upper waters, but consumption by phytoplankton increased it. Finally, N and P budgets were estimated. At the annual scale, this area constituted a sink of inorganic and a source of organic N and P for the peripheral area. NO3 and PO4 were horizontally advected from the peripheral regions into the intermediate waters (130-800 m) of the deep convection area, while organic matter was exported throughout the whole water column toward the surrounding areas. The annual budget suggests that the NW Med deep convection constitutes a major source of nutrients for the photic zone of the Mediterranean Sea.
Journal of Geophysical Research | 2018
Pierre Damien; Orens Pasqueron de Fommervault; Julio Sheinbaum; J. Jouanno; Victor F. Camacho‐Ibar; Olaf Duteil
The seasonal and interannual variability of chlorophyll in the Gulf of Mexico open waters is studied using a three‐dimensional coupled physical‐biogeochemical model. A 5 years hindcast driven by realistic open‐boundary conditions, atmospheric forcings, and freshwater discharges from rivers is performed. The use of recent in situ observations allowed an in‐depth evaluation of the model nutrient and chlorophyll seasonal distributions, including the chlorophyll vertical structure. We find that different chlorophyll patterns of temporal variability coexist in the deep basin which thereby cannot be considered as a homogeneous region with respect to chlorophyll dynamics. A partitioning of the Gulf of Mexico open waters based on the winter chlorophyll concentration increase is then proposed. This partition is basically explained by the amount of nutrients injected into the euphotic layer which is highly constrained by the dynamic of the winter mixed layer. The seasonal and interannual variability appears to be affected by the variability of atmospheric fluxes and mesoscale dynamics (Loop Current eddies in particular). Finally, estimates of primary production in the deep basin are provided.
Deep Sea Research Part I: Oceanographic Research Papers | 2015
Orens Pasqueron de Fommervault; Christophe Migon; Fabrizio D’Ortenzio; Maurizio Ribera d'Alcalà; Laurent Coppola
Deep Sea Research Part I: Oceanographic Research Papers | 2015
Orens Pasqueron de Fommervault; Christophe Migon; Aurélie Dufour; Fabrizio D'Ortenzio; Fayçal Kessouri; Patrick Raimbault; Nicole Garcia; Véronique Lagadec
Archive | 2018
Kenneth S. Johnson; Orens Pasqueron de Fommervault; Romain Serra; Fabrizio D'Ortenzio; Catherine Schmechtig; Hervé Claustre; Antoine Poteau
Journal of Geophysical Research | 2018
Pierre Testor; Anthony Bosse; Loïc Houpert; Félix Margirier; Laurent Mortier; Hervé Legoff; Denis Dausse; Matthieu Labaste; Johannes Karstensen; Daniel Hayes; Antonio Olita; Alberto Ribotti; Katrin Schroeder; Jacopo Chiggiato; Reiner Onken; Emma Heslop; Baptiste Mourre; Fabrizio D'Ortenzio; Nicolas Mayot; Héloïse Lavigne; Orens Pasqueron de Fommervault; Laurent Coppola; Louis Prieur; Vincent Taillandier; Xavier Durrieu de Madron; François Bourrin; Gaël Many; Pierre Damien; Claude Estournel; Patrick Marsaleix