Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Oriol Gutierrez is active.

Publication


Featured researches published by Oriol Gutierrez.


Water Research | 2009

Effects of long-term pH elevation on the sulfate-reducing and methanogenic activities of anaerobic sewer biofilms

Oriol Gutierrez; Donghee Park; Keshab Sharma; Zhiguo Yuan

The dosage of alkali is often applied by the wastewater industry to reduce the transfer of hydrogen sulfide from wastewater to the sewer atmosphere. In this paper the activities of Sulfate Reducing Bacteria (SRB) and Methanogenic Archaea (MA) under elevated pH conditions (8.6 and 9.0) were evaluated in a laboratory scale anaerobic sewer reactor. Compared to those in a control reactor without pH control (pH 7.6+/-0.1), the SRB activity was reduced by 30% and 50%, respectively, at pH 8.6 and pH 9.0. When normal pH was resumed, it took approximately 1 month for the SRB activity to fully recover. Methanogenic activities developed in the control reactor in 3 months after the reactor start-up, while no significant methanogenic activities were detected in the experimental reactor until normal pH was resumed. The results suggest that elevated pH at 8.6-9.0 suppressed the growth of methanogens. These experimental results clearly showed that, in addition to its well-known effect of reducing H(2)S transfer from the liquid to the gas phase, pH elevation considerably reduces sulfide and methane production by anaerobic sewer biofilms. These findings are significant for the optimal use of alkali addition to sewers for the control of H(2)S and CH(4) emissions. A model-based study showed that, by adding the alkali at the beginning rather than towards the end of a rising main, substantial savings in chemicals can be achieved while achieving the same level of sulfide emission control, and complete methane emission control.


Water Research | 2008

Evaluation of oxygen injection as a means of controlling sulfide production in a sewer system

Oriol Gutierrez; Janani Mohanakrishnan; Keshab Sharma; Rikke Louise Meyer; Jurg Keller; Zhiguo Yuan

Oxygen injection is often used to control biogenic production of hydrogen sulfide in sewers. Experiments were carried out on a laboratory system mimicking a rising main to investigate the impact of oxygen injection on anaerobic sewer biofilm activities. Oxygen injection (15-25mg O(2)/L per pump event) to the inlet of the system decreased the overall sulfide discharge levels by 65%. Oxygen was an effective chemical and biological oxidant of sulfide but did not cause a cessation in sulfide production, which continued in the deeper layers of the biofilm irrespective of the oxygen concentration in the bulk. Sulfide accumulation resumed instantaneously on depletion of the oxygen. Oxygen did not exhibit any toxic effect on sulfate reducing bacteria (SRB) in the biofilm. It further stimulated SRB growth and increased SRB activity in downstream biofilms due to increased availability of sulfate at these locations as the result of oxic conditions upstream. The oxygen uptake rate of the system increased with repeated exposure to oxygen, with concomitant consumption of organic carbon in the wastewater. These results suggest that optimization of oxygen injection is necessary for maximum effectiveness in controlling sulfide concentrations in sewers.


Water Research | 2011

Chemical dosing for sulfide control in Australia : an industry survey

Ramon Ganigué; Oriol Gutierrez; Ray Rootsey; Zhiguo Yuan

Controlling sulfide (H(2)S) production and emission in sewer systems is critical due to the corrosion and malodour problems that sulfide causes. Chemical dosing is one of the most commonly used measures to mitigate these problems. Many chemicals have been reported to be effective for sulfide control, but the extent of success varies between chemicals and is also dependent on how they are applied. This industry survey aims to summarise the current practice in Australia with the view to assist the water industry to further improve their practices and to identify new research questions. Results showed that dosing is mainly undertaken in pressure mains. Magnesium hydroxide, sodium hydroxide and nitrate are the most commonly used chemicals for sewers with low flows. In comparison, iron salts are preferentially used for sulfide control in large systems. The use of oxygen injection has declined dramatically in the past few years. Chemical dosing is mainly conducted at wet wells and pumping stations, except for oxygen, which is injected into the pipe. The dosing rates are normally linked to the control mechanisms of the chemicals and the dosing locations, with constant or profiled dosing rates usually applied. Finally, key opportunities for improvement are the use of mathematical models for the selection of chemicals and dosing locations, on-line dynamic control of the dosing rates and the development of more cost-effective chemicals for sulfide control.


Water Research | 2009

Impact of nitrate addition on biofilm properties and activities in rising main sewers

Janani Mohanakrishnan; Oriol Gutierrez; Keshab Sharma; Albert Guisasola; Ursula Werner; Rikke Louise Meyer; Jurg Keller; Zhiguo Yuan

Anaerobic sewer biofilm is a composite of many different microbial populations, including sulfate reducing bacteria (SRB), methanogens and heterotrophic bacteria. Nitrate addition to sewers in an attempt to control hydrogen sulfide concentrations affects the behaviour of these populations, which in turn impacts on wastewater characteristics. Experiments were carried out on a laboratory reactor system simulating a rising main to determine the impact of nitrate addition on the microbial activities of anaerobic sewer biofilm. Nitrate was added to the start of the rising main during sewage pump cycles at a concentration of 30 mg-N L(-1) for over 5 months. While it reduced sulfide levels at the outlet of the system by 66%, nitrate was not toxic or inhibitory to SRB activity and did not affect the dominant SRB populations in the biofilm. Long-term nitrate addition in fact stimulated additional SRB activity in downstream biofilm. Nitrate addition also stimulated the activity of nitrate reducing, sulfide oxidizing bacteria that appeared to be primarily responsible for the prevention of sulfide build up in the wastewater in the presence of nitrate. A short adaptation period of three to four nitrate exposure events (approximately 10 h) was required to stimulate biological sulfide oxidation, beyond which no sulfide accumulation was observed under anoxic conditions. Nitrate addition effectively controlled methane concentrations in the wastewater. The nitrate uptake rate of the biofilm increased with repeated exposure to nitrate, which in turn increased the consumption of biodegradable COD in the wastewater. These results provide a comprehensive understanding of the impact of nitrate addition on wastewater composition and sewer biofilm microbial activities, which will facilitate optimization of nitrate dosing for effective sulfide control in rising main sewers.


Water Research | 2010

Iron salts dosage for sulfide control in sewers induces chemical phosphorus removal during wastewater treatment.

Oriol Gutierrez; Donghee Park; Keshab Sharma; Zhiguo Yuan

Chemical phosphorus (P) removal during aerobic wastewater treatment induced by iron salt addition in sewer systems for sulfide control is investigated. Aerobic batch tests with activated sludge fed with wastewater containing iron sulfide precipitates showed that iron sulfide was rapidly reoxidised in aerobic conditions, resulting in phosphate precipitation. The amount of P removed was proportional to the amount of iron salts added, and for the sludge used, ratios of 0.44 and 0.37 mgP/mgFe were obtained for ferric and ferrous dosages, respectively. The hydraulic retention time (HRT) of iron sulfide in sewers was found to have a crucial impact on the settling of iron sulfide precipitates during primary settling, with a shorter HRT resulting in a higher concentration of iron sulfide in the primary effluent and thus enabling higher P removal. A mathematical model was developed to describe iron sulfide oxidation in aerated activated sludge and the subsequent iron phosphate precipitation. The model was used to optimise FeCl(3) dosing in a real wastewater collection and treatment system. Simulation studies revealed that, by moving FeCl(3) dosing from the WWTP, which is the current practice, to a sewer location upstream of the plant, both sulfide control and phosphate removal could be achieved with the current ferric salt consumption. This work highlights the importance of integrated management of sewer networks and wastewater treatment plants.


Water Research | 2010

Effects of nitrite concentration and exposure time on sulfide and methane production in sewer systems.

Guangming Jiang; Oriol Gutierrez; Keshab Sharma; Zhiguo Yuan

Nitrite dosing is a promising technology to prevent sulfide and methane formation in sewers, due to the known inhibitory/toxic effect of nitrite on sulfate-reducing bacteria (SRB) and methanogenic Archaea (MA). The dependency of nitrite-induced inhibition on sulfide and methane producing activities of anaerobic sewer biofilms on nitrite levels and exposure time is investigated using a range of nitrite concentrations (40, 80, 120 mg-N/L) and exposure time up to 24 days. The recovery of these activities after the 24-day nitrite dosage was also monitored for more than two months. The inhibition level was found to be dependent on both nitrite concentration and exposure time, with stronger inhibition observed at higher nitrite concentrations and/or longer exposure time. However, the time required for achieving 50% recovery of both sulfate-reducing and methanogenic activities after the cessation of nitrite dosage only marginally depended on nitrite concentration. Model-based analysis of the recovery data showed that the recovery was likely due to the regrowth of SRB and methanogens. The lab studies and mathematical analysis supported the development of an intermittent dosing strategy, which was tested in a 1-km long rising main sewer. The field trial confirmed that intermittent dosing of nitrite can effectively reduce/prevent the formation of both sulfide and methane.


Water Research | 2008

Nitrite effectively inhibits sulfide and methane production in a laboratory scale sewer reactor.

Janani Mohanakrishnan; Oriol Gutierrez; Rikke Louise Meyer; Zhiguo Yuan

The production and emission of hydrogen sulfide and methane by anaerobic microoganisms in sewer systems is a well-documented problem. The effectiveness of nitrite in controlling sulfide and methane production was tested in a laboratory scale sewer reactor. Nitrite was continuously dosed in the reactor for 25 days at concentrations of 20-140mgN/L. No sulfide and methane accumulation was observed in the reactor in the presence of nitrite. A significant reduction was observed in the sulfate reduction and methane production capabilities of the biofilm. Nitrite also stimulated biological sulfide oxidation within the biofilm. The nitrite uptake rate of the reactor increased over the nitrite dosing period and nitrous oxide production was observed within the biofilm. When nitrite addition was stopped, sulfate reduction and methane production gradually resumed, and reached pre-nitrite addition levels after 2.5 months. The slow recovery suggests that nitrite can be applied intermittently for sulfide and methane control, which represents a key advantage over similar chemicals such as nitrate and oxygen. The study demonstrates nitrite addition as a promising and effective strategy for the management of sulfide and methane in sewers. Further investigation and optimization are still required before application in the field.


Water Research | 2011

Optimization of intermittent, simultaneous dosage of nitrite and hydrochloric acid to control sulfide and methane productions in sewers

Guangming Jiang; Oriol Gutierrez; Keshab Sharma; Jurg Keller; Zhiguo Yuan

Free nitrous acid (FNA) was previously demonstrated to be biocidal to anaerobic sewer biofilms. The intermittent dosing of FNA as a measure for controlling sulfide and methane productions in sewers is investigated. The impact of three key operational parameters namely the dosing concentration, dosing duration and dosing interval on the suppression and subsequent recovery of sulfide and methane production was examined experimentally using lab-scale sewer reactors. FNA as low as 0.26 mg-N/L was able to suppress sulfide production after an exposure of 12h. In comparison, 0.09 mg-N/L of FNA with 6-h exposure was adequate to restrain methanogenesis effectively. The recovery of sulfide production was well described by an exponential recovery equation. Model-based analysis revealed that 12-h dosage at an FNA concentration of 0.26 mg-N/L every 5 days can reduce the average sulfide production by >80%. Economic analysis showed that intermittent FNA dosage is potentially a cost-effective strategy for sulfide and methane control in sewers.


Water Science and Technology | 2008

Continuous measurement of dissolved sulfide in sewer systems

Luke Sutherland-Stacey; Shaun Corrie; A. L. Neethling; Ian R D Johnson; Oriol Gutierrez; R. Dexter; Zhiguo Yuan; Jurg Keller; G. Hamilton

Sulfides are particularly problematic in the sewage industry. Hydrogen sulfide causes corrosion of concrete infrastructure, is dangerous at high concentrations and is foul smelling at low concentrations. Despite the importance of sulfide monitoring there is no commercially available system to quantify sulfide in waste water. In this article we report on our use of an in situ spectrometer to quantify bisulfide in waste water and additional analysis with a pH probe to calculate total dissolved sulfide. Our results show it is possible to use existing commercially available and field proven sensors to measure sulfide to mg/l levels continuously with little operator intervention and no sample preparation.


Water Research | 2015

Life cycle assessment of urban wastewater systems: quantifying the relative contribution of sewer systems.

Eva Risch; Oriol Gutierrez; Philippe Roux; Catherine Boutin; Lluís Corominas

This study aims to propose a holistic, life cycle assessment (LCA) of urban wastewater systems (UWS) based on a comprehensive inventory including detailed construction and operation of sewer systems and wastewater treatment plants (WWTPs). For the first time, the inventory of sewers infrastructure construction includes piping materials and aggregates, manholes, connections, civil works and road rehabilitation. The operation stage comprises energy consumption in pumping stations together with air emissions of methane and hydrogen sulphide, and water emissions from sewer leaks. Using a real case study, this LCA aims to quantify the contributions of sewer systems to the total environmental impacts of the UWS. The results show that the construction of sewer infrastructures has an environmental impact (on half of the 18 studied impact categories) larger than both the construction and operation of the WWTP. This study highlights the importance of including the construction and operation of sewer systems in the environmental assessment of centralised versus decentralised options for UWS.

Collaboration


Dive into the Oriol Gutierrez's collaboration.

Top Co-Authors

Avatar

Zhiguo Yuan

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Keshab Sharma

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Jurg Keller

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maite Pijuan

Catalan Institute for Water Research

View shared research outputs
Top Co-Authors

Avatar

Carles M. Borrego

Catalan Institute for Water Research

View shared research outputs
Top Co-Authors

Avatar

Olga Auguet

Catalan Institute for Water Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge